Using Gradient Flow to Renormalise Matrix Elements for Meson Mixing and Lifetimes

Matthew Black

In collaboration with: R. Harlander, F. Lange, A. Rago, A. Shindler, O. Witzel

June 21, 2024

1

Matthew Black

Introduction

- ➤ *B* mesons: bound QCD states of *b* quark and light antiquark (or charge conjugate)
- ➤ Large mass (*m^b ∼* 4*.*2 GeV) and relatively long lifetime produce diverse phenomenology
	- **► Lifetime prediction enters the predictions of many processes**
- ➤ CDF, D0, BaBar, Belle(II), LHCb, ATLAS, CMS brought about high-precision era for *B* physics
- \blacktriangleright Neutral B mesons $B^0_s=(\bar{b}s),\ \bar{B}^0_s=(b\bar{s})$ have different mass eigenstates \blacktriangleright quark eigenstate "mixing" or oscillations $B_s^0 \to D_s^- \pi^+$ $\quad - \bar{B}_s^0 \to B_s^0 \to D_s^- \pi^+$ $\quad -$ Untagged

Introduction 4

- ➤ *B*-meson mixing and lifetimes are measured experimentally to high precision
	- ➥ Key observables for probing New Physics ➡ **high precision in theory needed!**

Introduction 4

- ➤ *B*-meson mixing and lifetimes are measured experimentally to high precision
	- ➥ Key observables for probing New Physics ➡ **high precision in theory needed!**
- ➤ For *B* lifetimes and mixing, we use the **Heavy Quark Expansion**

➤ Factorise observables into ➡ perturbative QCD contributions ➡ **Non-Perturbative Matrix Elements**

- ➤ Four-quark ∆*B* = 0 and ∆*B* = 2 matrix elements can be determined from lattice QCD simulations
- \triangleright $\Delta B = 2$ well-studied by several groups \rightarrow precision increasing
	- ➥ preliminary ∆*K* = 2 for Kaon mixing study with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]
- ➤ ∆*B* = 0 ➡ exploratory studies from *∼*20 years ago
	- **►** contributions from gluon disconnected diagrams
	- **►** mixing with lower dimension operators in renormalisation

New Developments:

- ➤ [Lin, Detmold, Meinel '22] ➡ spectator effects in *b* hadrons
	- \rightarrow focus on lifetime ratios for both *B* mesons and Λ_b baryon
	- \blacktriangleright isospin breaking, $\langle B|\mathcal{O}^d \mathcal{O}^u|B\rangle$
	- \rightarrow position-space renormalisation + perturbative matching to $\overline{\text{MS}}$
- \blacktriangleright this work, [Black et al. '23]
	- \rightarrow goal is individual $\Delta B = 0$ matrix elements for *B* mesons
	- **►** non-perturbative gradient flow renormalisation
	- \rightarrow perturbative matching to $\overline{\text{MS}}$ in short-flow-time expansion

Operators and Current Status

$\Delta B = 2$ Operators

- ► Mass difference of neutral mesons ΔM_q ($q = d, s$) governed by $\Delta B = 2$ four-quark operators
- ▶ General BSM basis has 5 dimension-six operators
- \blacktriangleright In the SM, only \mathcal{O}_1^q $_1^q$ contributes to ΔM

$$
\mathcal{O}_1^q = \bar{b}^\alpha \gamma^\mu (1 - \gamma_5) q^\alpha \bar{b}^\beta \gamma_\mu (1 - \gamma_5) q^\beta, \qquad \qquad \langle \mathcal{O}_1^q \rangle = \langle \bar{B}_q | \mathcal{O}_1^q | B_q \rangle = \frac{8}{3} f_{B_q}^2 M_{B_q}^2 B_1^q
$$

- \blacktriangleright Matrix elements parameterised in terms of **decay constant** f_{B_q} and **bag parameters** B_i^q *i*
- \blacktriangleright HPQCD and FNAL/MILC choose perturbative renormalisation $+$ matching schemes
- ➤ RBC-UKQCD set up a non-perturbative renormalisation (NPR)

$\Delta B = 2$ – Literature Results 3

- \blacktriangleright ΔB = 2 Bag parameters well-studied on the lattice and with QCD sum rules
- ► see also ongoing work by RBC/UKQCD and JLQCD [Boyle et al '21] [Tsang, Lattice '23]
- $\frac{1}{2}$ the sum rule extends the sum rule $\frac{1}{2}$ $\frac{1}{2}$ correspond to the time $\frac{1}{2}$ uncertainties. ► dimension-7 matrix elements calculated for first time [HPQCD '19]

$\Delta B = 0$ Operators 9

$\Delta B = 0$ Operators 9

► For lifetimes, the dimension-6 $\Delta B = 0$ operators are:

$$
Q_1^q = \bar{b}^\alpha \gamma^\mu (1 - \gamma_5) q^\alpha \bar{q}^\beta \gamma_\mu (1 - \gamma_5) b^\beta, \qquad \langle Q_1^q \rangle = \langle B_q | Q_1^q | B_q \rangle = f_{B_q}^2 M_{B_q}^2 \mathcal{B}_1^q,
$$

\n
$$
Q_2^q = \bar{b}^\alpha (1 - \gamma_5) q^\alpha \bar{q}^\beta (1 - \gamma_5) b^\beta, \qquad \langle Q_2^q \rangle = \langle B_q | Q_2^q | B_q \rangle = \frac{M_{B_q}^2}{(m_b + m_q)^2} f_{B_q}^2 M_{B_q}^2 \mathcal{B}_2^q,
$$

\n
$$
T_1^q = \bar{b}^\alpha \gamma^\mu (1 - \gamma_5) (T^a)^{\alpha\beta} q^\beta \bar{q}^\gamma \gamma_\mu (1 - \gamma_5) (T^a)^{\gamma\delta} b^\delta, \qquad \langle T_1^q \rangle = \langle B_q | T_1^q | B_q \rangle = f_{B_q}^2 M_{B_q}^2 \epsilon_1^q,
$$

\n
$$
T_2^q = \bar{b}^\alpha (1 - \gamma_5) (T^a)^{\alpha\beta} q^\beta \bar{q}^\gamma (1 - \gamma_5) (T^a)^{\gamma\delta} b^\delta, \qquad \langle T_2^q \rangle = \langle B_q | T_2^q | B_q \rangle = \frac{M_{B_q}^2}{(m_b + m_q)^2} f_{B_q}^2 M_{B_q}^2 \epsilon_2^q.
$$

➤ For simplicity of computation, we want these to be colour-singlet operators:

$$
Q_{1} = \bar{b}^{\alpha} \gamma_{\mu} (1 - \gamma_{5}) q^{\alpha} \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) b^{\beta}
$$
\n
$$
Q_{2} = \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \bar{q}^{\beta} (1 + \gamma_{5}) b^{\beta}
$$
\n
$$
\tau_{1} = \bar{b}^{\alpha} \gamma_{\mu} (1 - \gamma_{5}) b^{\alpha} \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta}
$$
\n
$$
\tau_{2} = \bar{b}^{\alpha} \gamma_{\mu} (1 + \gamma_{5}) b^{\alpha} \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta}
$$
\n
$$
\tau_{1}^{+}
$$
\n
$$
\tau_{2}^{+}
$$
\n
$$
\tau_{3}^{+}
$$
\n
$$
\tau_{4}^{+}
$$
\n
$$
\tau_{5}^{+}
$$
\n
$$
\tau_{6}^{+}
$$
\n
$$
\tau_{7}^{+}
$$
\n
$$
\tau_{8}^{+}
$$
\n
$$
\tau_{9}^{+}
$$
\n
$$
\tau_{1}^{+}
$$
\n
$$
\tau_{2}^{+}
$$
\n
$$
\tau_{3}^{+}
$$
\n
$$
\tau_{4}^{+}
$$
\n
$$
\tau_{5}^{+}
$$
\n
$$
\tau_{6}^{+}
$$
\n
$$
\tau_{7}^{+}
$$

−0.029 = −0.107
|-0.107 +0.107 +0.107 +0.107

[−]0.024(sum rule) +0.⁰¹⁵

−0.017
−0.017(matching),

► Sum rules results taken in HQET limit

- 1. Complete exploratory studies in simplified setup without additional extrapolations
	- **► test case for gradient flow renormalisation and short-flow-time expansion procedure**
	- ➥ simulate physical charm and strange ➡ consider charm-strange pseudoscalar meson
- 2. Run full-scale simulations for *B* meson mixing and lifetimes
- 3. Use $\Delta B = 2$ matrix elements for further validation of method
- 4. Pioneer connected $\Delta B = 0$ matrix element calculation
- 5. Tackle disconnected contributions

Gradient Flow

Gradient Flow 13

- ➤ Introduced by [Narayanan, Neuberger '06] [Lüscher '10] [Lüscher '13]
	- ➥ scale setting (*√* 8*t*0), RG *β*-function, Λ parameter
- ➤ Introduce auxiliary dimension, **flow time** *τ* as a way to regularise the UV
- ➤ Well-defined smearing of gauge and fermion fields ➡ smoothens UV fluctuations

- ➤ Introduced by [Narayanan, Neuberger '06] [Lüscher '10] [Lüscher '13]
	- ➥ scale setting (*√* 8*t*0), RG *β*-function, Λ parameter
- ➤ Introduce auxiliary dimension, **flow time** *τ* as a way to regularise the UV
- ➤ Well-defined smearing of gauge and fermion fields ➡ smoothens UV fluctuations
- ➤ Extend gauge and fermion fields in flow time and express dependence with first-order differential equations:

$$
\partial_t B_\mu(\tau, x) = \mathcal{D}_\nu(\tau) G_{\nu\mu}(\tau, x), \quad B_\mu(0, x) = A_\mu(x),
$$

$$
\partial_t \chi(\tau, x) = \mathcal{D}^2(\tau) \chi(\tau, x), \qquad \chi(0, x) = q(x).
$$

- ▶ Fermionic Gradient Flow needed for renormalisation
- ➤ For use in renormalisation, there are two concepts:
	- **►** Gradient flow as an RG transformation [Carosso et al. '18] [Hasenfratz et al. '22]
	- ➥ Short-flow-time expansion [Lüscher, Weisz '11] [Makino, Suzuki '14] [Monahan, Orginos '15]

Gradient Flow – Short-Flow-Time Expansion 14

- ➤ Well-studied for e.g. energy-momentum tensor [Makino, Suzuki '14] [Harlander, Kluth, Lange '18]
- ▶ Re-express effective Hamiltonian in terms of 'flowed' operators:

$$
\mathcal{H}_{\text{eff}} = \sum_{n} C_{n} \mathcal{O}_{n} = \sum_{n} \widetilde{C}_{n}(\tau) \widetilde{\mathcal{O}}_{n}(\tau).
$$

➤ Relate to regular operators in 'short-flow-time expansion':

$$
\widetilde{\mathcal{O}}_n(\tau) = \sum_m \zeta_{nm}(\tau) \mathcal{O}_m + O(\tau)
$$

'flowed' MEs calculated on lattice replacing A_μ , $q \to B_\mu$, χ

Matching matrix calculated perturbatively

Gradient Flow – Short-Flow-Time Expansion 14

GF Renormalisation for Mixing and Lifetimes Matthew Black and Controller and Controller and Matthew Black

➤ Well-studied for e.g. energy-momentum tensor [Makino, Suzuki '14] [Harlander, Kluth, Lange '18]

▶ Re-express effective Hamiltonian in terms of 'flowed' operators:

$$
\mathcal{H}_{\text{eff}} = \sum_{n} C_{n} \mathcal{O}_{n} = \sum_{n} \widetilde{C}_{n}(\tau) \widetilde{\mathcal{O}}_{n}(\tau).
$$

➤ Relate to regular operators in 'short-flow-time expansion':

$$
\bigotimes_{m}^{\infty} \tau(\tau) = \sum_{m} \zeta_{nm}(\tau) \mathcal{O}_{m} + O(\tau)
$$

'flowed' MEs calculated on lattice replacing A_μ , $q \to B_\mu$, χ ∑ $\zeta_{nm}^{-1}(\mu,\tau)\langle\stackrel{\sim}{\cal O}_n\rangle(\tau)=\langle{\cal O}_m\rangle(\mu)$

 $▶$ Matrix element $\langle \mathcal{O}_m \rangle(\mu)$ in $\overline{\text{MS}}$ found in $\tau \to 0$ limit ➡ 'window' problem

► large systematic effects at very small flow times

n

 \rightarrow large flow time dominated by operators \propto *O*(τ)

 \blacktriangle matching matrix calculated perturbatively

Matrix Elements without Gradient Flow (Schematic) 15

Matrix Elements with Gradient Flow (Schematic) 16

Lattice Simulation

Lattice Simulation 18

 \triangleright We use RBC/UKQCD's 2+1 flavour DWF + Iwasaki gauge action ensembles [Shamir '93] [Iwasaki, Yoshie '84] [Iwasaki '85]

			L T $a^{-1}/$ GeV	am_l^{sea}	$am_{\rm s}^{\rm sea}$		M_π /MeV srcs \times N _{conf}	
C ₁	24	-64	1.7848	0.005	0.040	340	32×101	
\mathcal{C}	24	-64	1.7848	0.010	0.040	433	32×101	
M1		32 64	2.3833	0.004	0.030	302	32×79	
M ₂		32 64	2.3833	0.006	0.030	362	32×89	[Allton et al. '08]
M ₃		32 64	2.3833	0.008	0.030	411	32×68	[Aoki et al. '10] [Blum et al. '14]
F ₁ S	48.	96	2.785	0.002144	0.02144	267	24×98	[Boyle et al. '17]

- ► For strange quarks tuned to physical value, $am_q \ll 1$ \blacktriangleright ➥ Shamir DWF
- ➤ For heavy *b* quarks, *am^q >* 1 ➡ large discretisation effects ✗
	- ➥ manageable for physical *c* quarks instead
	- **► stout-smeared Möbius DWF [Morningstar, Peardon '03] [Brower, Neff, Orginos '12]**
- ➤ Exploratory setup using physical charm and strange quarks
	- $\rightarrow \Delta B = 0, 2 \rightarrow \Delta Q = 0, 2$, for generic heavy quark *Q*
	- \rightarrow neutral charm-strange meson mixing \rightarrow proxy to short-distance D^0 mixing up to spectator effects

Data Analysis and Results – ∆*Q* = 2

▶ Three-point correlation function:

$$
C_{\mathcal{Q}_i}^{\text{3pt}}(t,\Delta T,\tau) = \sum_{n,n'} \frac{\langle P_n | \mathcal{Q}_i | P_{n'} \rangle(\tau)}{4M_n M_{n'}} e^{-(\Delta T - t)M_n} e^{-tM_{n'}} \implies t_0 \ll t \ll t_0 + \Delta T} \frac{\langle P \rangle^2}{4M^2} \langle \mathcal{Q}_i \rangle(\tau) e^{-\Delta T M}
$$

➤ Measure along positive flow time *τ*

∆*Q* = 2 Bag Parameter Extraction 20

Mixing *O*¹ Operator vs GF time 21

➤ operator is renormalised in 'GF' scheme as it is evolved along flow time ➤ data at same lattice spacing overlap ➡ no light sea quark effects

Mixing \mathcal{O}_1 Operator vs GF time 21

➤ different lattice spacings overlap in physical flow time ➡ mild continuum limit

Combine with perturbative matching $\rightarrow \overline{\text{MS}}$ 22

➤ Relate to regular operators in 'short-flow-time expansion':

$$
\widetilde{\mathcal{O}}_n(\tau) = \sum_m \zeta_{nm}(\tau) \mathcal{O}_m + \mathit{O}(\tau)
$$
\n"flowed" MEs calculated on lattice
calculated \bullet

\n"matching matrix
calculated perturbatively

Combine with perturbative matching $\rightarrow \overline{\text{MS}}$ 22

➤ Relate to regular operators in 'short-flow-time expansion':

Combine with perturbative matching *→* MS 22

➤ Relate to regular operators in 'short-flow-time expansion':

$$
\overbrace{\mathcal{O}}_{n}(\tau) = \sum_{m} \zeta_{nm}(\tau) \mathcal{O}_{m} + O(\tau)
$$
\nHowever, the following matrix calculated on lattice

\nSubstituting the matrix calculated perturbatively calculated perturbatively calculated.

➤ Calculated at two-loop for *B*¹ based on [Harlander, Lange '22] [Borgulat et al. '23]:

$$
\zeta_{B_1}^{-1}(\mu,\tau) = 1 + \frac{a_s}{4} \left(-\frac{11}{3} - 2L_{\mu\tau} \right) + \frac{a_s^2}{43200} \left[-2376 - 79650L_{\mu\tau} - 24300L_{\mu\tau}^2 + 8250n_f + 6000 n_f L_{\mu\tau} \right. \\
\left. + 1800 n_f L_{\mu\tau}^2 - 2775\pi^2 + 300 n_f \pi^2 - 241800 \log 2 + 202500 \log 3 - 110700 \text{Li}_2 \left(\frac{1}{4} \right) \right]
$$

Mixing *O*¹ Matched Results 23

- ▶ Promising first signs of agreement ➥ statistical errors only
- ▶ Different perturbative orders "in same ball park"
	- ➥ systematic errors needed for meaningful comparison
- ▶ Consider existing short-distance *D*⁰ mixing results
	- [ETM '15] [FNAL/MILC '17] 0.757(27) 0.795(56)

Data Analysis – ∆*Q* = 0

$\Delta Q = 0$ Bag Parameter Extraction 25

∆*Q* = 0 Bag Parameter Extraction 25

► Bag parameters for Q_i extracted as for $\Delta B = 2$ operators

GF Renormalisation for Mixing and Lifetimes Matthew Black and Controller and Controller and Matthew Black

$Lifetimes $\overline{\mathcal{O}}_1$ Operator vs GF time 26$

➤ operator is renormalised in 'GF' scheme as it is evolved along flow time ➤ data at same lattice spacing overlap ➡ no light sea quark effects

Lifetimes *O*¹ Operator vs GF time 26

➤ different lattice spacings overlap in physical flow time ➡ mild continuum limit

∆*Q* = 0 Bag Parameter Extraction 27

 \blacktriangleright Three-point functions for τ_i have different functional form

- \blacktriangleright asymmetric signal: $(b\bar{b}) \rightarrow (s\bar{s})$
- \blacktriangleright *O*₁ and *T*₁ mix in renormalisation
- \rightarrow need both for preliminary results
- ➤ work in progress

Summary and Outlook

Summary 29

- \triangleright $\Delta B = 0$ four-quark matrix elements are strongly-desired quantities
	- **► Standard renormalisation introduces mixing with operators of lower mass dimension**
	- \rightarrow We aim to use the fermionic gradient flow as a non-perturbative renormalisation procedure
- ► We calculate $\Delta Q = 2$ matrix elements as a test case for the short-flow-time expansion
- ➤ Shown first analysis for short-distance charm-strange mixing and charm-strange lifetimes

➤ Preliminary ∆*Q* = 2 results show promising consistency with literature

Outlook 30

- ➤ Complete exploratory work with physical charm-strange meson
	- ➥ GF*→* MS analysis for all 5 dimension-six ∆*Q* = 2 operators
	- **► Validation against literature**
	- ➥ First GF*→* MS analysis for dimension-six ∆*Q* = 0 operators (connected pieces)
- ► Perturbative matching needed for complete $\Delta B = 2$ basis and all $\Delta B = 0$ operators
- ➤ Complete full-scale simulations for *B* meson mixing and lifetimes
	- ➥ multiple heavier-than-charm masses ➡ extrapolate to physical *b* mass
	- \rightarrow further comparisons to literature with $\Delta B = 2$ results
	- ➥ first results for ∆*B* = 0 operators
- ➤ Consider gluon disconnected contributions

Another sunny conference... 31

Join us for... Lattice Meets Continuum

Siegen, 30th September – 4th October 2024

https://indico.physik.uni-siegen.de/event/158/

Backup Slides

$\Delta B = 2$ Operators **A.1**

► Full BSM basis:

$$
\mathcal{O}_{1}^{q} = \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) q^{\alpha} \bar{b}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta}, \qquad \langle \mathcal{O}_{1}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{1}^{q} | B_{q} \rangle = \frac{8}{3} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{1}^{q}
$$
\n
$$
\mathcal{O}_{2}^{q} = \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \bar{b}^{\beta} (1 - \gamma_{5}) q^{\beta}, \qquad \langle \mathcal{O}_{2}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{2}^{q} | B_{q} \rangle = \frac{-5 M_{B_{q}}^{2}}{3(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{2}^{q},
$$
\n
$$
\mathcal{O}_{3}^{q} = \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \bar{b}^{\beta} (1 - \gamma_{5}) q^{\alpha}, \qquad \langle \mathcal{O}_{3}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{3}^{q} | B_{q} \rangle = \frac{M_{B_{q}}^{2}}{3(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{3}^{q},
$$
\n
$$
\mathcal{O}_{4}^{q} = \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \bar{b}^{\beta} (1 + \gamma_{5}) q^{\beta}, \qquad \langle \mathcal{O}_{4}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{4}^{q} | B_{q} \rangle = \left[\frac{2 M_{B_{q}}^{2}}{(m_{b} + m_{q})^{2}} + \frac{1}{3} \right] f_{B_{q}}^{2} M_{B_{q}}^{2} B_{4}^{q},
$$
\n
$$
\mathcal{O}_{5}^{q} = \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \bar{b}^{\beta} (1 + \gamma_{5}) q^{\alpha}, \qquad \langle \mathcal{O}_{5}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{5}^{q} |
$$

▶ Transformed basis (colour singlets only)

$$
Q_1^q = \bar{b}^\alpha \gamma^\mu (1 - \gamma_5) q^\alpha \bar{b}^\beta \gamma_\mu (1 - \gamma_5) q^\beta,
$$

\n
$$
Q_2^q = \bar{b}^\alpha \gamma^\mu (1 - \gamma_5) q^\alpha \bar{b}^\beta \gamma_\mu (1 + \gamma_5) q^\beta,
$$

\n
$$
Q_3^q = \bar{b}^\alpha (1 - \gamma_5) q^\alpha \bar{b}^\beta (1 + \gamma_5) q^\beta,
$$

\n
$$
Q_4^q = \bar{b}^\alpha (1 - \gamma_5) q^\alpha \bar{b}^\beta (1 - \gamma_5) q^\beta,
$$

\n
$$
Q_5^q = \frac{1}{4} \bar{b}^\alpha \sigma_{\mu\nu} (1 - \gamma_5) q^\alpha \bar{b}^\beta \sigma_{\mu\nu} (1 - \gamma_5) q^\beta
$$

\n
$$
\begin{pmatrix} \mathcal{O}_1^+ \\ \mathcal{O}_2^+ \\ \mathcal{O}_3^+ \\ \mathcal{O}_4^+ \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathcal{Q}_1^+ \\ \mathcal{Q}_2^+ \\ \mathcal{Q}_3^+ \\ \mathcal{Q}_4^+ \\ \mathcal{Q}_5^+ \end{pmatrix}
$$

- ➤ Advantages for both lattice calculation and the NPR procedure
- ➤ We are only concerned with parity-even components which then can be transformed back to SUSY basis