Using Gradient Flow to Renormalise Matrix Elements for Meson Mixing and Lifetimes

Matthew Black

In collaboration with: R. Harlander, F. Lange, A. Rago, A. Shindler, O. Witzel

June 21, 2024

- *B* mesons: bound QCD states of *b* quark and light antiquark (or charge conjugate) \succ
- \blacktriangleright Large mass ($m_b \sim 4.2 \,\text{GeV}$) and relatively long lifetime produce diverse phenomenology
 - ► Lifetime prediction enters the predictions of many processes
- CDF, D0, BaBar, Belle(II), LHCb, ATLAS, CMS brought about high-precision era for B physics \succ
- ▶ Neutral B mesons $B_s^0 = (\bar{b}s)$, $\bar{B}_s^0 = (b\bar{s})$ have different mass eigenstates ➡ quark eigenstate "mixing" or oscillations - $B^0_s \to D^-_s \pi^+$ - $\overline{B}^0_s \to B^0_s \to D^-_s \pi^+$ - Untagged

- ► B-meson mixing and lifetimes are measured experimentally to high precision
 - ► Key observables for probing New Physics ► high precision in theory needed!

- ► B-meson mixing and lifetimes are measured experimentally to high precision
 - ► Key observables for probing New Physics ► high precision in theory needed!

► For *B* lifetimes and mixing, we use the **Heavy Quark Expansion**

Factorise observables into = perturbative QCD contributions
 Non-Perturbative Matrix Elements

- Four-quark $\Delta B = 0$ and $\Delta B = 2$ matrix elements can be determined from lattice QCD simulations
- ▶ $\Delta B = 2$ well-studied by several groups ➡ precision increasing
 - reliminary $\Delta K = 2$ for Kaon mixing study with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]
- ► $\Delta B = 0$ ➡ exploratory studies from \sim 20 years ago
 - contributions from gluon disconnected diagrams
 - mixing with lower dimension operators in renormalisation

New Developments:

- ► [Lin, Detmold, Meinel '22] ➡ spectator effects in b hadrons
 - \blacktriangleright focus on lifetime ratios for both B mesons and Λ_b baryon
 - \blacktriangleright isospin breaking, $\langle B | \mathcal{O}^d \mathcal{O}^u | B \rangle$
 - \blacktriangleright position-space renormalisation + perturbative matching to MS
- ▶ this work, [Black et al. '23]
 - \blacktriangleright goal is individual $\Delta B = 0$ matrix elements for B mesons
 - non-perturbative gradient flow renormalisation
 - \blacktriangleright perturbative matching to $\overline{\mathrm{MS}}$ in short-flow-time expansion

Operators and Current Status

$\Delta B = 2$ Operators

- ▶ Mass difference of neutral mesons $\Delta M_q (q = d, s)$ governed by $\Delta B = 2$ four-quark operators
- ► General BSM basis has 5 dimension-six operators
- ▶ In the SM, only \mathcal{O}_1^q contributes to ΔM

$$\mathcal{O}_1^q = \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_5) q^{\alpha} \ \bar{b}^{\beta} \gamma_{\mu} (1 - \gamma_5) q^{\beta}, \qquad \langle \mathcal{O}_1^q \rangle = \langle \bar{B}_q | \mathcal{O}_1^q | B_q \rangle = \frac{8}{3} f_{B_q}^2 M_{B_q}^2 B_1^q$$

- > Matrix elements parameterised in terms of decay constant f_{B_q} and bag parameters B_i^q
- ► HPQCD and FNAL/MILC choose perturbative renormalisation + matching schemes
- RBC-UKQCD set up a non-perturbative renormalisation (NPR)

$\Delta B = 2$ – Literature Results

 $\blacktriangleright \Delta B = 2$ Bag parameters well-studied on the lattice and with QCD sum rules

- ▶ see also ongoing work by RBC/UKQCD and JLQCD [Boyle et al '21] [Tsang, Lattice '23]
- dimension-7 matrix elements calculated for first time [HPQCD '19]

$\Delta B = 0$ Operators

$\Delta B = 0$ Operators

▶ For lifetimes, the dimension-6 $\Delta B = 0$ operators are:

$$\begin{aligned} Q_{1}^{q} &= \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) q^{\alpha} \ \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) b^{\beta}, & \langle Q_{1}^{q} \rangle = \langle B_{q} | Q_{1}^{q} | B_{q} \rangle = f_{B_{q}}^{2} M_{B_{q}}^{2} \mathcal{B}_{1}^{q}, \\ Q_{2}^{q} &= \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \ \bar{q}^{\beta} (1 - \gamma_{5}) b^{\beta}, & \langle Q_{2}^{q} \rangle = \langle B_{q} | Q_{2}^{q} | B_{q} \rangle = \frac{M_{B_{q}}^{2}}{(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} \mathcal{B}_{2}^{q}, \\ T_{1}^{q} &= \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) (T^{a})^{\alpha\beta} q^{\beta} \ \bar{q}^{\gamma} \gamma_{\mu} (1 - \gamma_{5}) (T^{a})^{\gamma\delta} b^{\delta}, & \langle T_{1}^{q} \rangle = \langle B_{q} | T_{1}^{q} | B_{q} \rangle = f_{B_{q}}^{2} M_{B_{q}}^{2} \epsilon_{1}^{q}, \\ T_{2}^{q} &= \bar{b}^{\alpha} (1 - \gamma_{5}) (T^{a})^{\alpha\beta} q^{\beta} \ \bar{q}^{\gamma} (1 - \gamma_{5}) (T^{a})^{\gamma\delta} b^{\delta}, & \langle T_{2}^{q} \rangle = \langle B_{q} | T_{2}^{q} | B_{q} \rangle = \frac{M_{B_{q}}^{2}}{(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} \epsilon_{2}^{q}. \end{aligned}$$

► For simplicity of computation, we want these to be colour-singlet operators:

$$\begin{aligned} \mathcal{Q}_{1} &= \bar{b}^{\alpha} \gamma_{\mu} (1 - \gamma_{5}) q^{\alpha} \, \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) b^{\beta} \\ \mathcal{Q}_{2} &= \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \, \bar{q}^{\beta} (1 + \gamma_{5}) b^{\beta}) \\ \tau_{1} &= \bar{b}^{\alpha} \gamma_{\mu} (1 - \gamma_{5}) b^{\alpha} \, \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta} \\ \tau_{2} &= \bar{b}^{\alpha} \gamma_{\mu} (1 + \gamma_{5}) b^{\alpha} \, \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta} \end{aligned} \qquad \begin{aligned} \mathcal{Q}_{1}^{+} \\ \mathcal{Q}_{2}^{+} \\ T_{1}^{+} \\ T_{2}^{+} \end{aligned} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{1}{2N_{c}} & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2N_{c}} & 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \mathcal{Q}_{1}^{+} \\ \mathcal{Q}_{2}^{+} \\ \tau_{1}^{+} \\ \tau_{2}^{+} \end{pmatrix} \end{aligned}$$

$\Delta B = 0$ – Literature Results

➤ Sum rules results taken in HQET limit

- 1. Complete exploratory studies in simplified setup without additional extrapolations
 - ➡ test case for gradient flow renormalisation and short-flow-time expansion procedure
 - \blacktriangleright simulate physical charm and strange \Rightarrow consider charm-strange pseudoscalar meson
- 2. Run full-scale simulations for B meson mixing and lifetimes
- 3. Use $\Delta B = 2$ matrix elements for further validation of method
- 4. Pioneer connected $\Delta B=0$ matrix element calculation
- 5. Tackle disconnected contributions

Gradient Flow

Gradient Flow

- ▶ Introduced by [Narayanan, Neuberger '06] [Lüscher '10] [Lüscher '13]
 - ⇒ scale setting $(\sqrt{8t_0})$, RG β -function, Λ parameter
- > Introduce auxiliary dimension, flow time τ as a way to regularise the UV
- ► Well-defined smearing of gauge and fermion fields ➡ smoothens UV fluctuations

Gradient Flow

- Introduced by [Narayanan, Neuberger '06] [Lüscher '10] [Lüscher '13]
 - \blacktriangleright scale setting ($\sqrt{8t_0}$), RG β -function, Λ parameter
- > Introduce auxiliary dimension, flow time τ as a way to regularise the UV
- ► Well-defined smearing of gauge and fermion fields ➡ smoothens UV fluctuations
- Extend gauge and fermion fields in flow time and express dependence with first-order differential equations:

$$\partial_t B_\mu(\tau, x) = \mathcal{D}_\nu(\tau) G_{\nu\mu}(\tau, x), \quad B_\mu(0, x) = A_\mu(x), \partial_t \chi(\tau, x) = \mathcal{D}^2(\tau) \chi(\tau, x), \qquad \chi(0, x) = q(x).$$

- ► Fermionic Gradient Flow needed for renormalisation
- ► For use in renormalisation, there are two concepts:
 - Gradient flow as an RG transformation [Carosso et al. '18] [Hasenfratz et al. '22]
 - Short-flow-time expansion [Lüscher, Weisz '11] [Makino, Suzuki '14] [Monahan, Orginos '15]

Gradient Flow – Short-Flow-Time Expansion

> Well-studied for e.g. energy-momentum tensor [Makino, Suzuki '14] [Harlander, Kluth, Lange '18]

► Re-express effective Hamiltonian in terms of 'flowed' operators:

Gradient Flow – Short-Flow-Time Expansion

Well-studied for e.g. energy-momentum tensor [Makino, Suzuki '14] [Harlander, Kluth, Lange '18]

► Re-express effective Hamiltonian in terms of 'flowed' operators:

Matrix Elements without Gradient Flow (Schematic)

15

Matrix Elements with Gradient Flow (Schematic)

Lattice Simulation

We use RBC/UKQCD's 2+1 flavour DWF + Iwasaki gauge action ensembles [Shamir '93] [Iwasaki, Yoshie '84] [Iwasaki '85]

	L	T	$a^{-1}/{ m GeV}$	$am_l^{\rm sea}$	$am_{\!s}^{\rm sea}$	$M_{\pi}/{ m MeV}$	$srcs \times N_{conf}$	
C1	24	64	1.7848	0.005	0.040	340	32×101	
C2	24	64	1.7848	0.010	0.040	433	32×101	
M1	32	64	2.3833	0.004	0.030	302	32×79	
M2	32	64	2.3833	0.006	0.030	362	32×89	[Allton et al. '08
M3	32	64	2.3833	0.008	0.030	411	32×68	[Aoki et al. '10] [Blum et al. '14]
F1S	48	96	2.785	0.002144	0.02144	267	24×98	[Boyle et al. '17

> For strange quarks tuned to physical value, $am_a \ll 1$

- ➡ Shamir DWF
- For heavy b quarks, $am_q > 1 \Rightarrow$ large discretisation effects X
 - \blacktriangleright manageable for physical *c* quarks instead
 - ➡ stout-smeared Möbius DWF [Morningstar, Peardon '03] [Brower, Neff, Orginos '12]
- Exploratory setup using physical charm and strange quarks
 - $\Rightarrow \Delta B = 0, 2 \Rightarrow \Delta Q = 0, 2$, for generic heavy quark Q
 - \blacktriangleright neutral charm-strange meson mixing \blacklozenge proxy to short-distance D^0 mixing up to spectator effects

Data Analysis and Results – $\Delta Q = 2$

> Three-point correlation function:

$$C_{\mathcal{Q}_{i}}^{\mathrm{3pt}}(t,\Delta T,\boldsymbol{\tau}) = \sum_{n,n'} \frac{\langle P_{n} | \mathcal{Q}_{i} | P_{n'} \rangle(\boldsymbol{\tau})}{4M_{n}M_{n'}} e^{-(\Delta T-t)M_{n}} e^{-tM_{n'}} \underset{t_{0} \ll t \ll t_{0} + \Delta T}{\Longrightarrow} \frac{\langle P \rangle^{2}}{4M^{2}} \langle \mathcal{Q}_{i} \rangle(\boldsymbol{\tau}) e^{-\Delta TM_{n'}} e^{-\Delta TM_{n'}} e^{-\Delta TM_{n'}} e^{-tM_{n'}} e^{-tM_{n'}}} e^{-tM_{n'}} e^{-tM_{n'}}} e^{-tM_{n'}} e^{-tM_{n'}} e^{-tM_{n'}} e^{-tM_{n'}} e^{-$$

> Measure along positive flow time τ

$\Delta Q = 2$ Bag Parameter Extraction

Mixing \mathcal{O}_1 Operator vs GF time

> operator is renormalised in 'GF' scheme as it is evolved along flow time
 > data at same lattice spacing overlap ⇒ no light sea quark effects

Mixing \mathcal{O}_1 Operator vs GF time

➤ different lattice spacings overlap in physical flow time ➡ mild continuum limit

Combine with perturbative matching $\rightarrow \overline{\mathrm{MS}}$

► Relate to regular operators in 'short-flow-time expansion':

 $\widetilde{\mathcal{O}}_n(\tau) = \sum_m \zeta_{nm}(\tau) \mathcal{O}_m + O(\tau)$ 'flowed' MEs calculated on lattice matching matrix calculated perturbatively

Combine with perturbative matching $\rightarrow \overline{\mathrm{MS}}$

► Relate to regular operators in 'short-flow-time expansion':

$$\widetilde{\mathcal{O}}_{n}(\tau) = \sum_{m} \zeta_{nm}(\tau) \mathcal{O}_{m} + O(\tau)$$
'flowed' MEs calculated on lattice matching matrix calculated perturbatively
$$\sum_{n} \zeta_{nm}^{-1}(\mu, \tau) \langle \widetilde{\mathcal{O}}_{n} \rangle(\tau) = \langle \mathcal{O}_{m} \rangle(\mu)$$

Combine with perturbative matching $\rightarrow \overline{\mathrm{MS}}$

► Relate to regular operators in 'short-flow-time expansion':

$$\widetilde{\mathcal{O}}_{n}(\tau) = \sum_{m} \zeta_{nm}(\tau) \mathcal{O}_{m} + O(\tau)$$
'flowed' MEs calculated on lattice matching matrix calculated perturbatively
$$\sum_{n} \zeta_{nm}^{-1}(\mu, \tau) \langle \widetilde{\mathcal{O}}_{n} \rangle(\tau) = \langle \mathcal{O}_{m} \rangle(\mu)$$

> Calculated at two-loop for \mathcal{B}_1 based on [Harlander, Lange '22] [Borgulat et al. '23]:

$$\begin{aligned} \zeta_{\mathcal{B}_{1}}^{-1}(\mu,\tau) &= 1 + \frac{a_{s}}{4} \left(-\frac{11}{3} - 2L_{\mu\tau} \right) + \frac{a_{s}^{2}}{43200} \left[-2376 - 79650L_{\mu\tau} - 24300L_{\mu\tau}^{2} + 8250n_{f} + 6000 n_{f}L_{\mu\tau} \right. \\ &+ 1800 n_{f}L_{\mu\tau}^{2} - 2775\pi^{2} + 300 n_{f}\pi^{2} - 241800 \log 2 \\ L_{\mu\tau} &= \log(2\mu^{2}\tau) + \gamma_{E}, \quad \mu = 3 \,\text{GeV} \\ &+ 202500 \log 3 - 110700 \,\text{Li}_{2} \left(\frac{1}{4} \right) \right] \end{aligned}$$

Mixing \mathcal{O}_1 Matched Results

- Promising first signs of agreement
 statistical errors only
- Different perturbative orders "in same ball park"
 - systematic errors needed for meaningful comparison
- Consider existing short-distance
 D⁰ mixing results

[ETM '15]	0.757(27)
[FNAL/MILC '17]	0.795(56)

Data Analysis – $\Delta Q = 0$

$\Delta Q = 0$ Bag Parameter Extraction

$\Delta Q = 0$ Bag Parameter Extraction

▶ Bag parameters for Q_i extracted as for $\Delta B = 2$ operators

Lifetimes \mathcal{O}_1 Operator vs GF time

> operator is renormalised in 'GF' scheme as it is evolved along flow time
 > data at same lattice spacing overlap ⇒ no light sea quark effects

Lifetimes \mathcal{O}_1 Operator vs GF time

➤ different lattice spacings overlap in physical flow time ➡ mild continuum limit

$\Delta Q=0$ Bag Parameter Extraction

 \blacktriangleright Three-point functions for τ_i have different functional form

> asymmetric signal: (bb̄) → (ss̄)
 > O₁ and T₁ mix in renormalisation
 ⇒ need both for preliminary results

► work in progress

Summary and Outlook

Summary

- $\blacktriangleright \Delta B = 0$ four-quark matrix elements are strongly-desired quantities
 - Standard renormalisation introduces mixing with operators of lower mass dimension
 - ➡ We aim to use the fermionic gradient flow as a non-perturbative renormalisation procedure
- > We calculate $\Delta Q = 2$ matrix elements as a test case for the short-flow-time expansion
- > Shown first analysis for short-distance charm-strange mixing and charm-strange lifetimes

▶ Preliminary $\Delta Q = 2$ results show promising consistency with literature

Outlook

- Complete exploratory work with physical charm-strange meson
 - ➡ GF→ $\overline{\mathrm{MS}}$ analysis for all 5 dimension-six $\Delta Q = 2$ operators
 - ➡ Validation against literature
 - First $GF \rightarrow \overline{MS}$ analysis for dimension-six $\Delta Q = 0$ operators (connected pieces)
- ▶ Perturbative matching needed for complete $\Delta B = 2$ basis and all $\Delta B = 0$ operators
- ► Complete full-scale simulations for *B* meson mixing and lifetimes
 - \blacktriangleright multiple heavier-than-charm masses \Rightarrow extrapolate to physical b mass
 - \blacktriangleright further comparisons to literature with $\Delta B=2$ results
 - ➡ first results for $\Delta B = 0$ operators
- Consider gluon disconnected contributions

Join us for... Lattice Meets Continuum

Siegen, 30th September – 4th October 2024

% https://indico.physik.uni-siegen.de/event/158/

Backup Slides

$\Delta B = 2$ Operators

► Full BSM basis:

$$\begin{split} \mathcal{O}_{1}^{q} &= \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) q^{\alpha} \ \bar{b}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta}, \qquad \langle \mathcal{O}_{1}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{1}^{q} | B_{q} \rangle = \frac{8}{3} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{1}^{q} \\ \mathcal{O}_{2}^{q} &= \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \ \bar{b}^{\beta} (1 - \gamma_{5}) q^{\beta}, \qquad \langle \mathcal{O}_{2}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{2}^{q} | B_{q} \rangle = \frac{-5M_{B_{q}}^{2}}{3(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{2}^{q}, \\ \mathcal{O}_{3}^{q} &= \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \ \bar{b}^{\beta} (1 - \gamma_{5}) q^{\alpha}, \qquad \langle \mathcal{O}_{3}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{3}^{q} | B_{q} \rangle = \frac{M_{B_{q}}^{2}}{3(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{3}^{q}, \\ \mathcal{O}_{4}^{q} &= \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \ \bar{b}^{\beta} (1 + \gamma_{5}) q^{\beta}, \qquad \langle \mathcal{O}_{4}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{4}^{q} | B_{q} \rangle = \left[\frac{2M_{B_{q}}^{2}}{(m_{b} + m_{q})^{2}} + \frac{1}{3} \right] f_{B_{q}}^{2} M_{B_{q}}^{2} B_{4}^{q}, \\ \mathcal{O}_{5}^{q} &= \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \ \bar{b}^{\beta} (1 + \gamma_{5}) q^{\alpha}, \qquad \langle \mathcal{O}_{5}^{q} \rangle = \langle \bar{B}_{q} | \mathcal{O}_{5}^{q} | B_{q} \rangle = \left[\frac{2M_{B_{q}}^{2}}{3(m_{b} + m_{q})^{2}} + 1 \right] f_{B_{q}}^{2} M_{B_{q}}^{2} B_{5}^{q}. \end{split}$$

A.2

► Transformed basis (colour singlets only)

- Advantages for both lattice calculation and the NPR procedure
- > We are only concerned with parity-even components which then can be transformed back to SUSY basis