Indirect Constraints on Third Generation Baryon Number Violation

Gael Finauri

Quirks 2024

Zadar, Croatia – 18 June 2024

MAX-PLANCK-INSTITUT

based on M. Beneke, GF, A. A. Petrov 2404.09642

Matter‐antimatter asymmetry of the Universe requires Baryon Number Violation (BNV)

Matter‐antimatter asymmetry of the Universe requires Baryon Number Violation (BNV) Proton lifetime τ_p is the strongest constraint on BNV:

Super‐Kamiokande, Japan

Matter‐antimatter asymmetry of the Universe requires Baryon Number Violation (BNV) Proton lifetime τ_p is the strongest constraint on BNV:

Super‐Kamiokande, Japan

suggesting New Physics from very high scales $\overline{\Lambda_{\rm{BNV}}} \sim 10^{15}-10^{16}$ GeV

Matter‐antimatter asymmetry of the Universe requires Baryon Number Violation (BNV) Proton lifetime τ_p is the strongest constraint on BNV:

Super‐Kamiokande, Japan

suggesting New Physics from very high scales $\overline{\Lambda_{\rm{BNV}}} \sim 10^{15} - 10^{16}$ GeV

But what if BNV needs third generation quarks?

Why?

B‐anomalies

 $2/10$

explained by New Physics at scales $\Lambda_{\rm fl} \sim 1 - 10$ TeV

explained by New Physics at scales $\Lambda_{\rm fl} \sim 1 - 10$ TeV

Natural questions:

■ If BNV comes only from *b* quarks, can $Λ_{BNV}$ $~ √$ $Λ_{fl}$ $~\ll$ 10¹⁵ GeV be possible?

explained by New Physics at scales $\Lambda_{\rm fl} \sim 1 - 10$ TeV

Natural questions:

- **■** If BNV comes only from *b* quarks, can $Λ_{BNV}$ \sim $Λ$ _{fl} \ll 10¹⁵ GeV be possible?
- Would it lead to observable BNV *B* decays?

explained by New Physics at scales $\Lambda_{\rm fl} \sim 1 - 10$ TeV

Natural questions:

- **■** If BNV comes only from *b* quarks, can $Λ_{BNV}$ \sim $Λ$ _{fl} \ll 10¹⁵ GeV be possible?
- Would it lead to observable BNV *B* decays?

Answer: Don't know!

Proton would still decay through virtual *b* quarks, constraining Λ_{BNV}

Assumption: BNV happens only if at least a *b* quark is involved (in WET).

Assumption: BNV happens only if at least a *b* quark is involved (in WET). **Goal:** as $\Gamma \propto 1/\Lambda_{\sf{BNV}}^4$, find the smallest $\Lambda_{\sf{BNV}}$ allowed by proton decay

Assumption: BNV happens only if at least a *b* quark is involved (in WET). **Goal:** as $\Gamma \propto 1/\Lambda_{\text{BNV}}^4$, find the smallest Λ_{BNV} allowed by proton decay *⇒* estimate the largest BNV *B* decay rate

Assumption: BNV happens only if at least a *b* quark is involved (in WET). **Goal:** as $\Gamma \propto 1/\Lambda_{\text{BNV}}^4$, find the smallest Λ_{BNV} allowed by proton decay *⇒* estimate the largest BNV *B* decay rate

mediated by weak interaction and four‐fermion BNV operators (*⊗*) from SMEFT:

Assumption: BNV happens only if at least a *b* quark is involved (in WET). **Goal:** as $\Gamma \propto 1/\Lambda_{\text{BNV}}^4$, find the smallest Λ_{BNV} allowed by proton decay *⇒* estimate the largest BNV *B* decay rate

mediated by weak interaction and four‐fermion BNV operators (*⊗*) from SMEFT:

most suppressed $\Gamma(p \to f)$

Assumption: BNV happens only if at least a *b* quark is involved (in WET). **Goal:** as $\Gamma \propto 1/\Lambda_{\text{BNV}}^4$, find the smallest Λ_{BNV} allowed by proton decay *⇒* estimate the largest BNV *B* decay rate

mediated by weak interaction and four‐fermion BNV operators (*⊗*) from SMEFT:

<u>most suppressed</u> $\Gamma(p \to f)$ \implies smallest Λ_{BNV} from τ_p constraints

Assumption: BNV happens only if at least a *b* quark is involved (in WET). **Goal:** as $\Gamma \propto 1/\Lambda_{\text{BNV}}^4$, find the smallest Λ_{BNV} allowed by proton decay *⇒* estimate the largest BNV *B* decay rate

mediated by weak interaction and four‐fermion BNV operators (*⊗*) from SMEFT:

Results for $p \to \ell^+ \nu_\ell \bar{\nu}$

Experimental bounds [Super-Kamiokande 2014]

 $\Gamma(p \to e^+ \nu \nu)$ < 1.23 ⋅ 10^{−64} GeV $Γ(p \to μ^{+} \nuν) < 0.95 \cdot 10^{-64}$ GeV

Results for $p \to \ell^+ \nu_\ell \bar{\nu}$

Experimental bounds [Super-Kamiokande 2014]

 $\Gamma(p \to e^+ \nu \nu)$ < 1.23 ⋅ 10^{−64} GeV $Γ(p \to μ^{+} \nuν) < 0.95 \cdot 10^{-64}$ GeV

C^ν is the unknown dimensionless Wilson coefficient in the Weak Effective Theory (WET)

$$
\Gamma(p \to \ell^+ \nu_\ell \bar{\nu}) = \frac{|C_\nu|^2}{\Lambda_{\rm BNV}^4} \frac{|V_{ub}|^2 G_F^2 m_p^7}{7680 \pi^3 m_b^2} 10^{-3} {\rm GeV}^4 \times \begin{cases} 1.028 \,, & \text{for } p \to e^+ \nu_e \bar{\nu} \\ 0.933 \,, & \text{for } p \to \mu^+ \nu_\mu \bar{\nu} \end{cases}
$$

Results for $p \to \ell^+ \nu_\ell \bar{\nu}$

Experimental bounds [Super-Kamiokande 2014]

 $\Gamma(p \to e^+ \nu \nu)$ < 1.23 ⋅ 10^{−64} GeV $Γ(p \to μ^{+} \nuν) < 0.95 \cdot 10^{-64}$ GeV

C^ν is the unknown dimensionless Wilson coefficient in the Weak Effective Theory (WET)

$$
\Gamma(p\to\ell^+\nu_\ell\bar{\nu}) = \frac{|C_\nu|^2}{\Lambda_{\rm BNV}^4} \, \frac{|V_{ub}|^2 G_F^2 m_p^7}{7680 \pi^3 m_b^2} 10^{-3} {\rm GeV}^4 \times \begin{cases} 1.028 \, , & \text{for} \ p\to e^+\nu_e\bar{\nu} \\ 0.933 \, , & \text{for} \ p\to \mu^+\nu_\mu\bar{\nu} \end{cases}
$$

Using the experimental constraints

$$
\left.\frac{\Lambda_{\rm{BNV}}}{\sqrt{|C_{\nu}|}}\right|_{p\rightarrow e^+\nu_e\bar{\nu}} > 6.59\cdot 10^9\text{ GeV}\qquad\qquad \left.\frac{\Lambda_{\rm{BNV}}}{\sqrt{|C_{\nu}|}}\right|_{p\rightarrow \mu^+\nu_{\mu}\bar{\nu}} > 6.86\cdot 10^9\text{ GeV}
$$

rather **high!** Already showing that $\Lambda_{\rm RNV} \sim \Lambda_{\rm fl}$ is ruled out!

Experimental bounds [Super-Kamiokande 2014] $Γ(p \to π^+ \nu)$ < 5.35 $· 10^{-65}$ GeV

Assume factorization, true up to *O*(1) corrections

Experimental bounds [Super-Kamiokande 2014] $Γ(p \to π^+ \nu)$ < 5.35 $· 10^{-65}$ GeV

Assume factorization, true up to *O*(1) corrections

$$
\Gamma(p \to \pi^+ \bar{\nu}) = \frac{|C_{\nu}|^2}{\Lambda_{\text{BNV}}^4} \frac{|V_{ud}|^2 |V_{ub}|^2 G_F^2 m_p^5 f_\pi^2}{1024 \pi m_b^2} (2.18 \cdot 10^{-5} \text{GeV}^4)
$$

Experimental bounds [Super-Kamiokande 2014] $Γ(p \to π^+ \nu)$ < 5.35 $· 10^{-65}$ GeV

Assume factorization, true up to *O*(1) corrections

$$
\Gamma(p \to \pi^+ \bar{\nu}) = \frac{|C_{\nu}|^2}{\Lambda_{\text{BNV}}^4} \frac{|V_{ud}|^2 |V_{ub}|^2 G_F^2 m_p^5 f_\pi^2}{1024 \pi m_b^2} (2.18 \cdot 10^{-5} \text{GeV}^4)
$$

neglected suppressed contributions:

Experimental bounds [Super-Kamiokande 2014] $Γ(p \to π^+ \nu)$ < 5.35 $· 10^{-65}$ GeV

Assume factorization, true up to *O*(1) corrections

$$
\Gamma(p \to \pi^+ \bar{\nu}) = \frac{|C_{\nu}|^2}{\Lambda_{\text{BNV}}^4} \frac{|V_{ud}|^2 |V_{ub}|^2 G_F^2 m_p^5 f_\pi^2}{1024 \pi m_b^2} (2.18 \cdot 10^{-5} \text{GeV}^4)
$$

neglected suppressed contributions:

Using the experimental constraints

$$
\left.\frac{\Lambda_{\rm{BNV}}}{\sqrt{|C_{\nu}|}}\right|_{p\to\pi^+\bar\nu} > 3.34\cdot 10^9\text{ GeV}
$$

less effective than leptonic deca

Results for $p \to \pi^0 \ell^+$

Strongest experimental bounds [Super-Kamiokande 2020]

$$
\bullet\ \Gamma(p\rightarrow\pi^0e^+)<0.87\cdot10^{-66}\ \rm GeV
$$

 $\Gamma(p \to \pi^0 \mu^+)$ < 1.30 ⋅ 10⁻⁶⁶ GeV

two independent operators contributing

 \Rightarrow 2D constraints!

Results for $p \to \pi^0 \ell^+$

Strongest experimental bounds [Super-Kamiokande 2020]

\n- \n
$$
\Gamma(p \to \pi^0 e^+) < 0.87 \cdot 10^{-66} \text{ GeV}
$$
\n
\n- \n $\Gamma(p \to \pi^0 \mu^+) < 1.30 \cdot 10^{-66} \text{ GeV}$ \n
\n- \n two independent operators contributing\n \Rightarrow 2D constraints!\n
\n

$$
\Lambda_{\text{BNV}}\Big|_{p\to\pi^0e^+} > 6.23\cdot 10^{10} \text{ GeV} \left(|C_R^e|^2 + 0.0014 \text{Re}[C_L^{e*}C_R^e] + 0.304 |C_L^e|^2 \right)^{1/4},
$$

\n
$$
\Lambda_{\text{BNV}}\Big|_{p\to\pi^0\mu^+} > 5.63\cdot 10^{10} \text{ GeV} \left(|C_R^{\mu}|^2 + 0.283 \text{Re}[C_L^{\mu*}C_R^{\mu}] + 0.308 |C_L^{\mu}|^2 \right)^{1/4},
$$

Results for $p \to \pi^0 \ell^+$

Strongest experimental bounds [Super-Kamiokande 2020] $\Gamma(p \to \pi^0 e^+)$ < 0.87 ⋅ 10^{−66} GeV $\Gamma(p \to \pi^0 \mu^+)$ < 1.30 ⋅ 10⁻⁶⁶ GeV two independent operators contributing \Rightarrow 2D constraints!

$$
\Lambda_{\text{BNV}}\Big|_{p\to\pi^0e^+} > 6.23\cdot 10^{10} \text{ GeV} \left(|C_R^e|^2 + 0.0014 \text{Re}[C_L^{e*}C_R^e] + 0.304 |C_L^e|^2 \right)^{1/4},
$$
\n
$$
\Lambda_{\text{BNV}}\Big|_{p\to\pi^0\mu^+} > 5.63\cdot 10^{10} \text{ GeV} \left(|C_R^{\mu}|^2 + 0.283 \text{Re}[C_L^{\mu*}C_R^{\mu}] + 0.308 |C_L^{\mu}|^2 \right)^{1/4},
$$

these coefficients are 10 times more constrained with respect to *C^ν*

We can estimate the branching ratio using $\Lambda_{\rm BNV} > 6 \cdot 10^9$ GeV

$$
\mathcal{B}(\bar{B}\to X\ell)\approx \frac{m_b^5}{2^{10}3\pi^3\Gamma_{\text{tot}}^B\Lambda_{\text{BNV}}^4}
$$

We can estimate the branching ratio using $\Lambda_{\rm BNV} > 6 \cdot 10^9$ GeV

$$
\mathcal{B}(\bar{B}\to X\ell) \approx \frac{m_b^5}{2^{10}3\pi^3\Gamma_{\text{tot}}^B\Lambda_{\text{BNV}}^4} \approx (8|V_{cb}|G_F\Lambda_{\text{BNV}}^2)^{-2}
$$

We can estimate the branching ratio using $\Lambda_{\rm BNV} > 6 \cdot 10^9$ GeV

$$
\mathcal{B}(\bar{B} \to X\ell) \approx \frac{m_b^5}{2^{10} 3\pi^3 \Gamma_{\text{tot}}^B \Lambda_{\text{BNV}}^4} \approx (8|V_{cb}|G_F \Lambda_{\text{BNV}}^2)^{-2} \lesssim \mathcal{O}(5 \cdot 10^{-29})
$$

showing that direct observation is ruled out: $B \rightarrow X \ell$

We can estimate the branching ratio using $\Lambda_{\rm BNV} > 6 \cdot 10^9$ GeV

$$
\mathcal{B}(\bar{B}\to X\ell) \approx \frac{m_b^5}{2^{10}3\pi^3\Gamma_{\text{tot}}^B\Lambda_{\text{BNV}}^4} \approx (8|V_{cb}|G_F\Lambda_{\text{BNV}}^2)^{-2} \lesssim \mathcal{O}(5\cdot 10^{-29})
$$

showing that direct observation is ruled out: \bar{B} \rightarrow

However...

what about operators with *τ* lepton? Not directly constrained by *p* decay!

Both *b* and *τ* have to be virtual! Efficiently constrained by loop induced effects

Both *b* and *τ* have to be virtual! Efficiently constrained by loop induced effects Estimate of this process $p \to \ell^+ \nu_\ell \bar{\nu}_\tau$ gives

 $\Lambda_{\text{BNV}} \gtrsim (0.4 \div 1.8) \cdot 10^6 \text{ GeV}$

Both *b* and *τ* have to be virtual! Efficiently constrained by loop induced effects Estimate of this process $p \to \ell^+ \nu_\ell \bar{\nu}_\tau$ gives

 $Λ_{\rm BNV} \ge (0.4 \div 1.8) \cdot 10^6$ GeV

$$
\mathcal{B}(\bar{B}\to X\tau)\lesssim (10^{-13}\div 10^{-15})
$$

closer to detectability, but experimental efficiency in reconstructing *τ* is much smaller...

Both *b* and *τ* have to be virtual! Efficiently constrained by loop induced effects Estimate of this process $p \to \ell^+ \nu_\ell \bar{\nu}_\tau$ gives

 $Λ_{\rm BNV} \ge (0.4 \div 1.8) \cdot 10^6$ GeV

$$
\mathcal{B}(\bar{B}\to X\tau)\lesssim (10^{-13} \div 10^{-15})
$$

closer to detectability, but experimental efficiency in reconstructing *τ* is much smaller...

$$
\mathcal{B}(B^0 \to p\mu^-)|_{\rm exp} < 2.6 \cdot 10^{-9} \qquad \text{[LHCb 2022]}
$$

 $Q_{BB} = \varepsilon^{abc} [\tilde{d}_n^a P_B u_n^b] [\tilde{u}_s^c P_B \ell_t]$ $Q_{BL} = \varepsilon^{abc} [\tilde{d}_n^a P_B u_n^b] [\tilde{u}_s^c P_L \ell_t]$ $Q_{LR} = \varepsilon^{abc} [\tilde{d}_p^a P_L u_r^b] [\tilde{u}_s^c P_R \ell_t]$ $Q_{LL} = \varepsilon^{abc} [\tilde{d}_n^a P_L u_r^b] [\tilde{u}_s^c P_L \ell_t]$ $Q_{R\nu} = \varepsilon^{abc} [\tilde{d}_n^a P_R u_r^b] [\tilde{d}_s^c P_L \nu_t]$ $Q_{L\nu} = \varepsilon^{abc} [\tilde{d}_n^a P_L u_r^b] [\tilde{d}_s^c P_L \nu_t]$

one loop SMEFT*→*WET matching known

[W. Dekens, P. Stoffer, 2019]

Wilson coefficients in the WET are not all independent, due to CKM rotation of the left‐handed *d* quarks $Q_{RR} = \varepsilon^{abc} [\tilde{d}_n^a P_R u_r^b] [\tilde{u}_s^c P_R \ell_t]$ $Q_{BL} = \varepsilon^{abc} [\tilde{d}_n^a P_B u_n^b] [\tilde{u}_s^c P_L \ell_t]$ $Q_{LR} = \varepsilon^{abc} [\tilde{d}_n^a P_L u_r^b] [\tilde{u}_s^c P_R \ell_t]$ $Q_{LL} = \varepsilon^{abc} [\tilde{d}_n^a P_L u_r^b] [\tilde{u}_s^c P_L \ell_t]$ $Q_{R\nu} = \varepsilon^{abc} [\tilde{d}^a_p P_R u^b_r] [\tilde{d}^c_s P_L \nu_t]$

$$
Q_{L\nu} = \varepsilon^{abc} [\tilde{d}_p^a P_L u_r^b] [\tilde{d}_s^c P_L \nu_t]
$$

one loop SMEFT*→*WET matching known

[W. Dekens, P. Stoffer, 2019]

Wilson coefficients in the WET are not all independent, due to CKM rotation of the left‐handed *d* quarks

$$
C_{RL}^{111} = C_{duq}^{111},
$$

\n
$$
C_{R\nu}^{111} = -V_{ud}C_{duq}^{111} - V_{cd}C_{duq}^{112} - V_{td}C_{duq}^{113},
$$

\n
$$
C_{R\nu}^{112} = -V_{us}C_{duq}^{111} - V_{cs}C_{duq}^{112} - V_{ts}C_{duq}^{113},
$$

\n
$$
C_{R\nu}^{113} = -V_{ub}C_{duq}^{111} - V_{cb}C_{duq}^{112} - V_{tb}C_{duq}^{113},
$$

$$
Q_{RR} = \varepsilon^{abc} [\tilde{d}_p^a P_R u_r^b] [\tilde{u}_s^c P_R \ell_t]
$$

$$
Q_{RL} = \varepsilon^{abc} [\tilde{d}_{p}^{a} P_{R} u_{r}^{b}] [\tilde{u}_{s}^{c} P_{L} \ell_{t}]
$$

$$
Q_{LR} = \varepsilon^{abc} [\tilde{d}_{p}^{a} P_{L} u_{r}^{b}] [\tilde{u}_{s}^{c} P_{R} \ell_{t}]
$$

$$
Q_{LL} = \varepsilon^{abc} [\tilde{d}_{p}^{a} P_{L} u_{r}^{b}] [\tilde{u}_{s}^{c} P_{L} \ell_{t}]
$$

$$
Q_{R\nu} = \varepsilon^{abc} [\tilde{d}_{p}^{a} P_{R} u_{r}^{b}] [\tilde{d}_{s}^{c} P_{L} \nu_{t}]
$$

$$
Q_{L\nu} = \varepsilon^{abc} [\tilde d^a_p P_L u^b_r] [\tilde d^c_s P_L \nu_t
$$

one loop SMEFT*→*WET matching known

[W. Dekens, P. Stoffer, 2019]

Under the assumption that BNV occurs only if *b* quark is involved:

Under the assumption that BNV occurs only if *b* quark is involved: Scanned for the less constrained SMEFT operators

Under the assumption that BNV occurs only if *b* quark is involved: Scanned for the less constrained SMEFT operators \circ Derived bounds for Λ_{BNV} from proton decay in three decay channels

Under the assumption that BNV occurs only if *b* quark is involved: O Scanned for the less constrained SMEFT operators \odot Derived bounds for $\Lambda_{\rm BNV}$ from proton decay in three decay channels \Diamond Showed $\mathcal{B}(\bar{B}\to X\ell)$ \leq $\mathcal{O}(5\cdot 10^{-29})$ \Rightarrow undetectable!

Under the assumption that BNV occurs only if *b* quark is involved: Scanned for the less constrained SMEFT operators \circ Derived bounds for $\Lambda_{\rm BNV}$ from proton decay in three decay channels \Diamond Showed $\mathcal{B}(\bar{B}\to X\ell)$ \leq $\mathcal{O}(5\cdot 10^{-29})$ \Rightarrow undetectable! **O** For τ less restrictive $\mathcal{B}(\bar{B}\to X\tau) \leq 10^{-13} \div 10^{-15}$

Under the assumption that BNV occurs only if *b* quark is involved: O Scanned for the less constrained SMEFT operators \circ Derived bounds for $\Lambda_{\rm BNV}$ from proton decay in three decay channels \Diamond Showed $\mathcal{B}(\bar{B}\to X\ell)$ \leq $\mathcal{O}(5\cdot 10^{-29})$ \Rightarrow undetectable! \bullet For *τ* less restrictive $\mathcal{B}(\bar{B}\to X\tau) \leq 10^{-13} \div 10^{-15}$

Take‐home message:

Direct detection of BNV *B* decays is impossible!

Under the assumption that BNV occurs only if *b* quark is involved: O Scanned for the less constrained SMEFT operators \circ Derived bounds for $\Lambda_{\rm BNV}$ from proton decay in three decay channels \Diamond Showed $\mathcal{B}(\bar{B}\to X\ell)$ \leq $\mathcal{O}(5\cdot 10^{-29})$ \Rightarrow undetectable! \bullet For *τ* less restrictive $\mathcal{B}(\bar{B}\to X\tau) \leq 10^{-13} \div 10^{-15}$

Take‐home message:

Direct detection of BNV *B* decays is impossible!

me: "... we should be careful, only in the assumption of dim-6 interactions..."

Under the assumption that BNV occurs only if *b* quark is involved: Scanned for the less constrained SMEFT operators \circ Derived bounds for $\Lambda_{\rm BNV}$ from proton decay in three decay channels \Diamond Showed $\mathcal{B}(\bar{B}\to X\ell)$ \leq $\mathcal{O}(5\cdot 10^{-29})$ \Rightarrow undetectable! **o** For τ less restrictive $\mathcal{B}(\bar{B}\to X\tau) \leq 10^{-13} \div 10^{-15}$

Take‐home message:

Direct detection of BNV *B* decays is impossible!

me: "... we should be careful, only in the assumption of dim-6 interactions..." MB: "you become even more famous if you state wrong no-go theorems!"

Thank You!

Backup Slides

... in *B* Physics

Theoretical predictions are affected by the non‐perturbative nature of hadronic QCD

However nature provided an intrinsic perturbative scale *m^b ∼* 5 GeV

⇒ B decays employing Effective Field Theories (HQET, SCET, ...) to separate perturbative physics from universal non‐perturbative inputs

