

B

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

> Suppressed interference in the SMEFT and related topics Celine Degrande

Plan

- Introduction to SMEFT
- SMEFT and interference
- CPV in EW diboson
- NLO corrections
- Dim-8 in diboson
- Further comments

Introduction to SMEFT

Indirect detection of NP

• Assumption : NP scale >> energies probed in experiments

EFT

Parametrize any NP but an ∞ number of coefficients

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d \quad \text{SM fields \& sym.}$$
• Assumption : $\mathbf{E}_{exp} << \Lambda$

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^6$$
a finite number of coefficients =>Predictive!

C. Degrande

- Model independent (i.e. parametrize a large class of models) : any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

m

High energy tails

SMEFT and interference

Errors : higher power of $1/\Lambda$

Dimension 8 basis: Li et al., 2005.00008

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $				
VVVV	0	$4,\!2$	$\psi\psi\psi\psi\psi$	2,0	2,0	
$VV\phi\phi$	0	2	$\psi\psi\phi\phi$	0	0	
$VV\psi\psi$	0	2	$\phi\phi\phi\phi$	0	0	
$V\psi\psi\phi$	0	2				

$$|M(x)|^{2} = \frac{|M_{SM}(x)|^{2}}{\Lambda^{0}} + \frac{2\Re (M_{SM}(x)M_{d6}^{*}(x))}{\Lambda^{-2}} + \frac{|M_{d6}(x)|^{2} + \dots}{\Lambda^{-4}} + \mathcal{O}(\Lambda^{-6})$$

$$\mathcal{O}(1) \qquad \sim 0 \qquad \qquad \mathcal{O}(0.1) \qquad \qquad \mathcal{O}(0.03)$$

Assuming ~0 C. Degrande

Interference

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^{2} + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ \Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) &= \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2} \cos \alpha} \\ & \text{mom} \\ \text{spin} \\ \text{Not always positive} \\ \sigma &\propto \sum_{x} |M(x)|^{2} \quad \text{if} \\ M_{SM}(x_{1}) &= 1, M_{SM}(x_{2}) = \cancel{M} \\ M_{d6}(x_{1}) &= \cancel{M}, M_{d6}(x_{2}) = 1 \\ & \text{of } \alpha \approx \pi/2 \\ M^{2} \rightarrow M^{2} - i\Gamma M \\ \\ \end{bmatrix} \\ \begin{array}{c} \mathcal{M}_{SM}(x) \mathcal{M}_{d6}(x) \mathcal{M}_{d6}(x$$

Interference suppression from phase space

Interference revival: Formalism

C.D., M. Maltoni 2012.06595

$$\begin{split} \sigma^{|int|} &\equiv \int d\Phi \left| \frac{d\sigma_{int}}{d\Phi} \right| >> \sigma_{int} & = \text{Phase space Suppression} \\ \sigma^{|meas|} &\equiv \int d\Phi_{meas} \left| \sum_{\{um\}} \frac{d\sigma}{d\Phi} \right| & \text{Experimentally accessible?} \\ &= \lim_{N \to \infty} \sum_{i=1}^{N} w_i * \text{sign} \left(\sum_{um} ME(\vec{p_i}, um) \right) \\ \text{Fully: } \frac{d\sigma_{int}}{d\theta} (pp \to Z\gamma) \propto \cos \theta \\ \text{Not at all: } \sigma_{int}(\mu_L) &= -\sigma_{int}(\mu_R) \end{split}$$

CPV in EWdiboson

dominant CP operators

at the interference level

 $m_t \neq 0 \neq m_b$

C. Degrande

(X^3)		$(\psi^2 \phi^3)$		$(\psi^2 \phi^2 D)$	
$O_{\tilde{G}GG}$	$\int f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$O_{t\phi}$	$(\phi^{\dagger}\phi)(\overline{q}_{3}t\tilde{\phi})$	$O_{\phi tb}$	$i(\tilde{\phi}^{\dagger}D_{\mu}\phi)(\bar{t}\gamma^{\mu}b)$
$O_{\tilde{W}WW}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$O_{b\phi}$	$(\phi^{\dagger}\phi)(\overline{q}_{3}b\phi)$		
	$(X^2\phi^2)$		(ψ^4)		$(X\psi^2\phi)$
$O_{\phi \tilde{G}}$	$\phi^{\dagger}\phi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	$O_{qtqb}^{(1)}$	$(\bar{q}_3^j t)\epsilon_{jk}(\bar{q}_3^k b)$	O_{tG}	$(\overline{q}_3 \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu}$
$O_{\phi \tilde{W}}$	$\phi^{\dagger}\phi\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	$O_{qtqb}^{(8)}$	$(\bar{q}_3^j T_A t) \epsilon_{jk} (\bar{q}_3^k T_A b)$	O_{tW}	$(\overline{q}_3 \sigma^{\mu\nu} t) \tau^I \tilde{\phi} W^I_{\mu\nu}$
$O_{\phi \tilde{B}}$	$\phi^{\dagger}\phi\widetilde{B}_{\mu u}B^{\mu u}$	ifi	modinory	O_{tB}	$(\overline{q}_3 \sigma^{\mu\nu} t) \tilde{\phi} B_{\mu\nu}$
$O_{\phi \tilde{W}B}$	$\phi^{\dagger} \tau^{I} \phi \widetilde{W}^{I}_{\mu u} B^{\mu u}$		mayinary	O_{bG}	$(\overline{q}_3 \sigma^{\mu\nu} T^A b) \phi G^A_{\mu\nu}$
		CO	efficient	O_{bW}	$(\overline{q}_3 \sigma^{\mu\nu} b) \tau^I \phi W^I_{\mu\nu}$
				O_{bB}	$(\overline{q}_3 \sigma^{\mu u} b) \phi B_{\mu u}$

Table 4: List of CP-odd dimension-6 operators in our reduced basis under the $U(1)^{13}$ symmetry.

C.D., J. Touchèque, <u>2110.02993</u> Bonnefoy et al., 2112.03889

Basis reduction

If b is massless,

 $b_R \to e^{-i\varphi_{bG}} b'_R$

leaves the SM Lagrangian invariant but

 $e^{i\varphi_{bG}}|C_{bG}|(\bar{Q}\sigma^{\mu\nu}T^Ab)\tilde{\phi}G^A_{\mu\nu} \to |C_{bG}|(\bar{Q}\sigma^{\mu\nu}T^Ab')\tilde{\phi}G^A_{\mu\nu}$

No CP violation from C_{bG} in the massless b limit

The relative phase of operators only matter at $\mathcal{O}\left(\Lambda^{-4}
ight)$

CPV

neglecting CKM phase $\sigma_{int}(C - even) = 0$ Int $0 \neq O^{CP-odd} = 0$ SM/dim6² WZ/ γ are not C-even processes but $\sigma_{int} \approx 0$ $O_{SM}^{CP-odd} \approx 0$

Large enough cross-sections for accurate differential meas.

Leptonic and mostly visible decays

Interference suppression

Process	$W^+Z \to \mu^-\mu^+e^+\nu_e$	$W^-Z \to \mu^-\mu^+ e^- \tilde{\nu_e}$	
$\sigma(SM)$	15.74(2) fb	$9.88(1) {\rm fb}$	
δ_{PDF}	3.45%	3.78%	
$\sigma(\mathcal{O}_{\widetilde{W}WW})$	0.047(4) fb	-0.033(3) fb 🔸	Suppressed
Schwartz Bound	16.13 fb <	8.85 fb <	Cappiccea
$\sigma^{ int }(\mathcal{O}_{\widetilde{W}WW})$	3.302(4) fb <	2.028(3) fb <	from phase space
$\sigma^{ meas }(\mathcal{O}_{\widetilde{W}WW})$	1.084(4) fb	0.634(3) fb	
$\sigma_{\Lambda^{-4}}(\mathcal{O}_{\widetilde{W}WW})$	4.133(5) fb	1.982(3) fb	
$\sigma(\mathcal{O}_{\phi \widetilde{W}B})$	0.0086(7) fb	-0.0066(4) fb 🔨	
Schwartz Bound	1.21 fb	0.76 fb 🗲	
$\sigma^{ int }(\mathcal{O}_{\phi \widetilde{W}B})$	0.5467(7) fb	$0.3533(4)$ fb \checkmark	
$\sigma^{ meas }(\mathcal{O}_{\phi \widetilde{W}B})$	0.1807(7) fb	0.1100(4) fb	largely available
$\sigma_{\Lambda^{-4}}(\mathcal{O}_{\phi \widetilde{W}B})$	0.0231(3) fb	0.0145(2) fb	

 $C = 1, \Lambda = 1$ TeV

Towards asymmetries

Comparison with other variable

Process	W	$^+Z \rightarrow \mu^-\mu^-$	$+e^+\nu_e$	
Operators	SM	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\phi \widetilde{W}B}$	
$\Delta p_{\perp}(p_e, p_q)$	-0.04(2)	-1.612(4)	-0.3888(7)	knowing the guark direction
$\Delta p_{\perp}(p_e, p_{\Sigma}^z)$	-0.02(2)	-0.628(4)	-0.1207(7)	
$\Delta p_{\perp}(p_e, p_e^z)$	0.0(2)	-0.535(4)	-0.1173(7)	
$\Delta p_{\perp}(p_e, p_Z^z)$	-0.01(2)	-0.527(4)	-0.0874(7)	
$\Delta \sin \phi_{WZ}$	-0.03(2)	-0.321(4)	0.0031(7)	
$\Delta \left(\Delta \phi_{eZ} ight)$	0.07(2)	0.196(4)	0.0688(7)	
SM stat err 30 fb^{-1}		0.7		
SM stat err 100 fb^{-1}		0.4		50 70% officianay
SM stat err 3000 fb^{-1}		0.07		
Process	W	$Z \rightarrow \mu^- \mu^-$	$e^{-}\tilde{\nu}_{e}$	
Operators	SM	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\phi \widetilde{W}B}$	
$\Delta p_{\perp}(p_e, p_q)$	-0.08(1)	1.006(3)	0.2522(4)	$80-90\%$ in $W\gamma$
$\Delta p_{\perp}(p_e, p_{\Sigma}^z)$	-0.03(1)	-0.331(3)	0.0810(4)	
$\Delta p_{\perp}(p_e, p_e^z)$	-0.01(1)	0.295(3)	0.0514(4)	
$\Delta p_{\perp}(p_e, p_Z^z)$	0.00(1)	0.295(3)	0.0627(4)	
$\Delta \sin \phi_{WZ}$	-0.02(1)	-0.190(3)	0.0013(4)	Better than HE observables
$\Delta \left(\Delta \phi_{eZ} \right)$	-0.05(1)	0.022(3)	0.0109(4)	
SM stat err 30 fb^{-1}		0.6		
SM stat err 100 fb^{-1}		0.3		
SM stat err 3000 fb^{-1}		0.06		
	pprox 0			
	· · · ·			

HE behaviour

Constraints

Keeping uncertainties under control

EW bosons production

Large/small K-factor

 σ is not the right variable to probe the interference

Interference revival: toy example

$$A = d\sigma(\cos \theta > 0) - d\sigma(\cos \theta < 0)$$

$$A_{int}^{LO} = 2 \qquad > > \sigma_{int}^{LO} = 0.16$$

$$A_{int}^{NLO} = 2.15$$

$$K_A = 1.1$$

No/little cancellation (Much) larger sensitivity Less sensitive to corrections (smaller errors)

with M. Maltoni

 $p p > W^+(e^+v)Z(\mu^+\mu^-), \mu_R = \mu_F = 1 \text{ TeV}$

Dim-8 in diboson

dim-8 operators

$$\begin{aligned} \mathcal{O}_{1} &= iB^{\mu}{}_{\nu}B^{\nu}{}_{\lambda}(\bar{d}_{\mathrm{R}p}\gamma^{\lambda}\overleftrightarrow{D}_{\mu}d_{\mathrm{R}r}), \\ \mathcal{O}_{2} &= iB^{\mu}{}_{\nu}B^{\nu}{}_{\lambda}(\bar{u}_{\mathrm{R}p}\gamma^{\lambda}\overleftrightarrow{D}_{\mu}u_{\mathrm{R}r}), \\ \mathcal{O}_{3} &= iB^{\mu}{}_{\nu}B^{\nu}{}_{\lambda}\left(\bar{q}_{\mathrm{L}p}\gamma^{\lambda}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}r}\right), \\ \mathcal{O}_{4} &= iW^{I\mu}{}_{\lambda}B^{\nu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{5} &= iW^{I\mu}{}_{\lambda}\tilde{B}^{\nu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{6} &= iW^{I\nu}{}_{\lambda}B^{\mu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{7} &= iW^{I\nu}{}_{\lambda}\tilde{B}^{\mu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{8} &= iW^{I\mu}{}_{\nu}W^{I\nu}{}_{\lambda}(\bar{d}_{\mathrm{R}p}\gamma^{\lambda}\overleftarrow{D}_{\mu}d_{\mathrm{R}r}), \\ \mathcal{O}_{9} &= iW^{I\mu}{}_{\nu}W^{I\nu}{}_{\lambda}(\bar{u}_{\mathrm{R}p}\gamma^{\lambda}\overleftarrow{D}_{\mu}u_{\mathrm{R}r}), \end{aligned}$$

 $\mathcal{O}_{10} = i W^{I\mu}{}_{\nu} W^{I\nu}{}_{\lambda} \left(\bar{q}_{\mathrm{L}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} q_{\mathrm{L}p} \right),$ $\mathcal{O}_{11} = i\epsilon^{IJK} W^{I\mu}{}_{\nu} W^{J\nu}{}_{\lambda} \left(\bar{q}^{i}_{\mathrm{L}p} \gamma^{\lambda} \left(\tau^{K} \right)_{i}{}^{j} \overleftarrow{D}_{\mu} q_{\mathrm{L}rj} \right),$ $\mathcal{O}_{12} = i\epsilon^{IJK} \tilde{W}^{I\mu}{}_{\nu} W^{J\nu}{}_{\lambda} \left(\bar{q}^{i}_{\mathrm{L}p} \gamma^{\lambda} \left(\tau^{K} \right)_{i}{}^{j} \overleftarrow{D}_{\mu} q_{\mathrm{L}rj} \right),$ $\mathcal{O}_{13} = i\epsilon^{IJK} W^{I\mu}{}_{\nu} \tilde{W}^{J\nu}{}_{\lambda} \left(\bar{q}^{i}_{\mathrm{L}p} \gamma^{\lambda} \left(\tau^{K} \right)_{i}{}^{j} \overleftarrow{D}_{\mu} q_{\mathrm{L}rj} \right),$ $\mathcal{O}_{14} = i \left(\bar{u}_{\mathrm{R}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} u_{\mathrm{R}p} \right) \left(D_{\lambda} H^{\dagger} D^{\mu} H \right),$ $\mathcal{O}_{15} = i \left(\bar{d}_{\mathrm{R}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} d_{\mathrm{R}p} \right) \left(D_{\lambda} H^{\dagger} D^{\mu} H \right),$ $\mathcal{O}_{16} = i \left(\bar{q}_{\mathrm{L}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} q_{\mathrm{L}p} \right) \left(D_{\lambda} H^{\dagger} D^{\mu} H \right),$ $\mathcal{O}_{17} = i \left(\bar{q}_{\mathrm{L}p} \gamma^{\lambda} \tau^{K} \overleftarrow{D}_{\mu} q_{\mathrm{L}r} \right) \left(D_{\lambda} H^{\dagger} \tau^{K} D^{\mu} H \right),$ $\mathcal{O}_{18} = i(\bar{u}_{\mathrm{B}n}\gamma^{\mu}\overleftrightarrow{D}^{\nu}d_{\mathrm{B}r})\epsilon^{ij}(D^{\mu}H_iD^{\nu}H_i),$

CD,H.-L. Li, <u>2303.10493</u>

(a) dim-6 vertex corrections

(b) dim-8 contact corrections

Interference behaviour

Table 2: Scaling of $q\bar{q} \rightarrow WW$ interference amplitude after summing and averaging over spins and helicities.

Interference by helicity (O₈)

(h_{W^+}, h_{W^-})	$\mathcal{A}_{h_i}^8/rac{C_8}{\Lambda^4}$	$\mathcal{A}_{h_i}^{ ext{SM}}$	
,+	$\mathbf{S}^2 S \sin^2\left(\frac{\theta}{2}\right) \sin(\theta) \left(S - 2M_W^2\right) \delta_{ab}$	0	S ⁰
_, _	S $S\sin(\theta)\cos(\theta)M_W^2\delta_{ab}$	$\frac{4\pi\alpha\sin(\theta)M_Z^2\delta_{ab}\sqrt{1-\frac{4M_W^2}{S}}}{3(S-M_Z^2)} S^{-1}$	1
-, 0	$\frac{S^{3/2}}{\sqrt{2}M_W} \frac{S^{3/2} \sin^2(\frac{\theta}{2})(2\cos(\theta)+1)M_W^2 \delta_{ab}}{\sqrt{2}M_W}$	$\frac{4\pi\alpha\sin^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{2S-8M_W^2}}{3SM_W-3M_WM_Z^2}S^{-1}$	1/2
+,+	$S \qquad S\sin(\theta)\cos(\theta)M_W^2\delta_{ab}$	$\frac{4\pi\alpha\sin(\theta)M_Z^2\delta_{ab}\sqrt{1-\frac{4M_W^2}{S}}}{3(S-M_Z^2)} S^{-1}$	
+,-	$S^{\underline{2}}2S\sin\left(\frac{\theta}{2}\right)\cos^{3}\left(\frac{\theta}{2}\right)\delta_{ab}\left(S-2M_{W}^{2}\right)$	0	S ⁰
+, 0	$\frac{S^{3/2} \ S^{3/2} \ \cos^2\left(\frac{\theta}{2}\right) (2\cos(\theta) - 1) M_W^2 \delta_{ab}}{\sqrt{2} M_W}$	$\frac{4\pi\alpha\cos^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{2S-8M_W^2}}{3SM_W-3M_WM_Z^2} S^-$	-1/2
0,+	$S^{3/2} - \frac{S^{3/2} \sin^2(\frac{\theta}{2})(2\cos(\theta)+1)M_W^2 \delta_{ab}}{\sqrt{2}M_W}$	$\frac{4\sqrt{2}\pi\alpha\sin^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{S-4M_W^2}}{3M_WM_Z^2-3SM_W}S^{-1}$	-1/2
0, -	$\frac{S^{3/2} \ S^{3/2} \ \cos^2\left(\frac{\theta}{2}\right) (1 - 2\cos(\theta)) M_W^2 \delta_{ab}}{\sqrt{2}M_W}$	$\frac{4\sqrt{2}\pi\alpha\cos^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{S-4M_W^2}}{3M_WM_Z^2-3SM_W}S^{-1}$	1/2
0,0	$S -S\sin 2\theta M_W^2 \delta_{ab}$	$\frac{2\pi\alpha\sin(\theta)M_{Z}^{2}\delta_{ab}(2M_{W}^{2}+S)\sqrt{1-\frac{4M_{W}^{2}}{S}}}{3M_{W}^{2}(M_{Z}^{2}-S)}$	0

Table 3: Helicity amplitudes for $d\bar{d} \to WW$ for $h_d = 1$ and $h_{\bar{d}} = -1$, where $\mathcal{A}_{h_i}^8$ is generated by \mathcal{O}_8 .

Interference by helicity (O15)

(h_{W^+}, h_{W^-})	$\mathcal{A}_{h_i}^{15}/rac{C_{15}}{\Lambda^4}$	$\mathcal{A}_{h_i}^{ ext{SM}}$
-,+	$\mathbf{S} \ S \sin^2\left(\frac{\theta}{2}\right) \sin(\theta) M_W^2 \delta_{ab}$	0
,	$S - S \sin^2\left(\frac{\theta}{2}\right) \sin(\theta) M_W^2 \delta_{ab}$	$\frac{4\pi\alpha\sin(\theta)M_Z^2\delta_{ab}\sqrt{1-\frac{4M_W^2}{S}}}{3(S-M_Z^2)} S^{-1}$
-,0	$\frac{S^{3/2} \sin^2\left(\frac{\theta}{2}\right) \cos(\theta) M_W \delta_{ab}}{\sqrt{2}}$	$\frac{4\pi\alpha\sin^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{2S-8M_W^2}}{3SM_W-3M_WM_Z^2} S^{-1/2}$
+,+	$\mathbf{S} S \sin(\theta) \cos^2\left(\frac{\theta}{2}\right) M_W^2 \delta_{ab}$	$\frac{4\pi\alpha\sin(\theta)M_Z^2\delta_{ab}\sqrt{1-\frac{4M_W^2}{S}}}{3(S-M_Z^2)} S^{-1}$
+,-	$S - S\sin(\theta)\cos^2\left(\frac{\theta}{2}\right)M_W^2\delta_{ab}$	0
+, 0	$\frac{S^{3/2} \cos^2\left(\frac{\theta}{2}\right) \cos(\theta) M_W \delta_{ab}}{\sqrt{2}}$	$\frac{4\pi\alpha\cos^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{2S-8M_W^2}}{3SM_W-3M_WM_Z^2} \mathbf{S}^{-1}$
0, +	$S^{3/2} - \frac{S^{3/2} \sin^2(\theta) M_W \delta_{ab}}{2\sqrt{2}}$	$\frac{4\sqrt{2}\pi\alpha\sin^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{S-4M_W^2}}{3M_WM_Z^2-3SM_W}$
0, -	$\frac{S^{3/2}}{\frac{S^{3/2}\sin^2(\theta)M_W\delta_{ab}}{2\sqrt{2}}}$	$\frac{4\sqrt{2\pi\alpha\cos^2\left(\frac{\theta}{2}\right)M_Z^2}\delta_{ab}\sqrt{S-4M_W^2}}{3M_WM_Z^2-3SM_W}$
0,0	$S^2 - \frac{1}{8}S^2\sin(2\theta)\delta_{ab}$	$\frac{2\pi\alpha\sin(\theta)M_Z^2\delta_{ab}(2M_W^2+S)\sqrt{1-\frac{4M_W^2}{S}}}{3M_W^2(M_Z^2-S)}$

Distributions

SM Parton level

LHC symmetry cancellation

Not present at lepton colliders

Comparison to dim6

WZ

Further comments

Comments

ME/ML trained vs Observable

- Efficient observables
 - more sensitive
 - smaller errors
- Both CP and dim8 encourage more differential measurements

Observables vs ML trained on model

Faroughy, Bortolato, Kamenik, Kosnik Smolkovic, Symmetry 13 (2021) no.7, 1129

Neural network

Linear combination

$$\omega_{14} \sim [(p_{\ell^-} \times p_{\ell^+}) \cdot (p_b - p_{\bar{b}})][(p_b - p_{\bar{b}}) \cdot (p_{\ell^-} - p_{\ell^+})]$$

$$\omega_6 \sim [(p_{\ell^-} \times p_{\ell^+}) \cdot (p_b + p_{\bar{b}})][(p_{\ell^-} - p_{\ell^+}) \cdot (p_b + p_{\bar{b}})]$$

Comments

ME/ML trained vs Observable

- Efficient observables
 - more sensitive
 - smaller errors
- Both CP and dim8 encourage more differential measurements

CPV in WW

Preliminary

$$C_{11} = 1, \Lambda = 1$$
TeV

w+/w- helicities	x-sect. in fb (LHC13)	
 	0.0705	. 0
 - O	0.0865	$A \propto s^0$
 - +	0	
 O -	0.0784	
 0 0	0	$\sigma_{10} \approx -1 \text{pb}$
 0 +	-0.0849	10
 + -	0	$C_{10} = 1, \Lambda = 1$ TeV
 + O	-0.0785	
 + +	-0.0684	

A = 0.4 fb