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What can we learn from exotic hadrons? 




For most of them it is clear that standard interpretations 

in terms of  mesons or  baryons are not viable.


Are they multiquark states, i.e. ‘elementary’ hadrons, or sort of 

mesonic nuclei, composite hadrons?


This subject is forcing us to think to compositeness and

fine-tuning in a context rich of solid experimental discoveries.    

(a few names: X(3872), Z(4430), Zc, Z′￼c, Zb…)

qq̄ qqq
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The fields of elementary particles appear in .

As opposite, a composite particle is one whose field  does not 

appear in : it can be created/destroyed by operators constructed 

by (functions of) other fields, e.g. those appearing in . 

Consider the complete propagator for  which may, or may not, be 
elementary 

ℒ
Φ

ℒ
ℒ

Φ

Δ′￼(p) = ∫
∞

0

ρ(μ2)
p2 + μ2 − iϵ

dμ2

where the spectral function is defined by (  for ) ρ = 0 p2 > 0

θ(p0) ρ(−p2) = ∑
n

δ4(p − pn) |⟨0 |Φ(0) |n⟩ |2

and |n⟩ = |k⟩ or multiparticle state |k1, k2⟩…
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Let  be a one-particle state  with mass . 

Suppose  has a non-zero amplitude with .

Then, according to a general result, the complete propagator 


 of the bare field  has a pole at  with residue 

  where (Lorentz) 

|k⟩ m
⟨k | Φ†(0) |0⟩

Δ′￼(p) Φ −m2

Z = |N |2 > 0

⟨0 |Φ(0) |k⟩ =
N

2E
E = k2 + m2

As a consequence of this, it must be  ρ(μ2) = Z δ(μ2 − m2)

Δ′￼(p) =
Z

p2 + m2 − iϵ

E L E M E N TA R Y  V S  C O M P O S I T E  PA R T I C L E S



E L E M E N TA R Y  V S  C O M P O S I T E  PA R T I C L E S
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However the spectral function also includes multiparticle 

states in . The contribution of states like   

is incorporated in the function 

|n⟩ |k1, k2, …⟩
σ ≥ 0

ρ(μ2) = Z δ(μ2 − m2) + σ(μ2)

Consider the case   which corresponds to non-zero 

amplitudes of  with   only. Then

Z = 0
⟨k1, k2, … | Φ†(0) |0⟩

Δ′￼(p) = ∫
∞

0

σ(μ2)
p2 + μ2 − iϵ

dμ2

The complete propagator is described only by the coupling 


of  to multi-particle states, namely Φ ∫
∞

0
σ(μ2) dμ2



E L E M E N TA R Y  D E U T E R O N
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Say that the Lagrangian  of the nuclear theory contains only

the elementary fields of the proton  and the neutron . 


Add to  another elementary field,  (it can be composite in terms 

of quarks, but  not in terms of ). Call it elementary deuteron. 


Assume that  is a one-particle state of mass  having non-zero 

amplitude with . It can’t be  nor  — must be the 

elementary deuteron one-particle state.


The complete propagator of  has a pole at  with residue : 

the manifestation of the elementary deuteron.

ℒ
p n

ℒ 𝔡
p, n

⟨k | m
𝔡†(0) |0⟩ ⟨n, k | ⟨p, k |

𝔡 −m2 Z



C O M P O S I T E  D E U T E R O N
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If  we are making the case of the free theory, .

(Trivial case: if there is an elementary deuteron it must interact with  and )


If  we are in the case in which the complete propagator is 

due  only to the coupling of  to the   continuum, . 

(Composite case: the  field in  can be substituted by function  of the 

elementary fields . We can introduce a field  for the composite deuteron by

adding to  a term of the form  and integrating over  in the 

path integral. This opens the way (but does not correspond) to the description of deuteron 

as a  bound state. 

Bound states can be counted with phase shifts in elastic scattering but 

their number  is . This formula is not `practical` since, at , 

all the inelastic channels are open and Levinson theorem is proved for the elastic 

scattering only,  and not even for shallow bound states.)

Z = 1 Δ′￼(p) = Δ(p)
n p

Z = 0
𝔡 np |np, k1, k2⟩

𝔡 ℒ F(n, p)
n, p Φ

ℒ Δℒ = λ(F(n, p) − Φ)2 Φ

np

N N = (δℓ(0) − δℓ(E = ∞)) E = ∞



T H E  L E E  M O D E L

8

n n
p

π−

See the “Lee-model” (’54) in Henley & Thirring, Elementary Quantum Field Theory, McGraw-Hill 

T.D.  Lee, Phys. Rev. 95, 1329 (1954)

|n, in⟩ = Z |n, bare⟩ + ∫k
Ck |p π−(k)⟩

Z + ∫k
|Ck |2 = 1



W E I N B E R G ’ S  A N A LY S I S  O F  T H E  D E U T E R O N
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See Weinberg  Phys. Rev.  137, B672 (1965)

|d⟩ = Z |𝔡⟩ + ∫k
Ck |np(k)⟩

Z + ∫k
|Ck |2 = 1

The analysis is done in NRQM. The starting point is the 

same of that in the Lee model

Is it possible to extract   from data?Z



W E I N B E R G ’ S  A N A LY S I S  O F  T H E  D E U T E R O N
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r0 = −
Z

1 − Z
R + O ( 1

mπ )
R =

1

2mB

a =
2(1 − Z)

2 − Z
R + O ( 1

mπ )

k cot δ ≃ −
1
a

+
1
2

r0 k2

where the effective range expansion is 

(effective range)

( binding energy)B =

(scattering length )> 0

( phase-shift in pn)δ =



T H E  S P E C I A L  R O L E  O F  X(3872)
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• The binding energy of  is , an outlier wrt most of the other 
exotic resonance observed. 


• Does such a small   arise from a tuning of the strong interactions in the 
 system (“molecule”) making  large (and positive) and 

 small? 


• From the  lineshape one can extract the effective range , which for a 
molecule, like the deuteron, is expected to be .                                                                                                                       
But the  is not like the deuteron since it involves another coincidence: 

, whereas  — the pion cannot be integrated 
out and we get a lower cutoff .                                                                                     

Do pion interactions make a larger ?  Positive or negative?


• Indeed, in the deuteron analysis, a compact deuteron would require a 
negative   with .

X B ≲ 100 keV

B
DD̄* a
B ∼ 1/(2ma2)

X r0
r0 ∼ 1/mπ ∼ 1.5 fm

X
mD* − mD ≃ mπ mn − mp ≪ mπ

μ ≡ (m*D − mD)2 − m2
π ≈ mπ /3

r0

r0 |r0 | > 1/mπ



B E T H E / L A N D A U - S M O R O D I N S K Y  
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Scattering in the presence of shallow bound states generated by 

purely attractive potentials in NRQM are characterized by

r0 ≥ 0

even if there is a repulsive core, but in a very narrow region 

around the origin. In this case  once . O(1/mπ) ≥ 0 Z = 0

So a nuclear deuteron would need an  small (  fm ) and 

positive, whereas an elementary deuteron should involve an 


 large (  fm ) and negative. Data on  scattering say

r0 ≈ 1

r0 ≫ 1 np

rexpt.
0 = + 1.74 fm

Esposito et al.  2108.11413

https://arxiv.org/abs/2108.11413


T H E  C A S E  O F  T H E  X ( 3 8 7 2 )
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The vicinity of the X(3872) to  threshold is considered by

many authors as —the proof— of its nuclear nature: a loosely

bound state of a  and a  meson. The term molecule is used.


No  scattering experiments are possible, yet  the experimental 
determination of  can proceed through the `lineshape` of the X(3872)

using the connection between scattering amplitude (S-wave, low ) 


                     


and BW formula.


Assumption: the  decay channel is the dominating one for the X.

 

DD̄*

D D̄*

DD̄*
r0

k

f =
1

k cot δ(k) − ik
=

1

− 1
a + 1

2 r0k2 − ik

DD̄*



T H E  C A S E  O F  T H E  X ( 3 8 7 2 )
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f(X → J/ψππ) = −
(2N/g)

(2/g)(E − m0
X) − 2μ+δ + E μ+/2δ + ik

E = mJ/ψππ − mD − mD̄*

and   is the reduced mass of the charged  pair.μ+ DD̄*

For small kinetic energies (and using LHCb analysis)

δ = mD*− + mD+ − mD̄*0 − mD0

Esposito et al.  2108.11413, Phys. Rev. D105 (2022) 3, L031503

https://arxiv.org/abs/2108.11413
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f(X → J/ψππ) = −
(2N/g)

(2/g)(E − m0
X) − 2μ+δ + E μ+/2δ + ik

For small kinetic energies

−
1
a

=
2m0

X

g
+ 2μ+δ ≃ − 6.92 fm

r0 = −
2

μg
−

2μ+

2μ2δ
≃ − 5.34 fm

using ,  being the reduced mass of the neutral  pair,

and taking  (shaky…) and  (stable determination) from the 

experimental analysis. Since  can be larger, . 

E = k2/2μ μ DD̄*
g m0

X
g r0 ≤ − 2 fm

positive a

negative r0



( )  A C C O R D I N G  T O  S O M E  E S T I M AT E S−r0
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A: Baru et al., 2110.07484

B: Esposito et al., 2108.11413

C: LHCb, 2109.01056

D: Maiani & Pilloni GGI-Lects

E: Mikhasenko, 2203.04622

A

B

C

D

E

0 5 10 15

-r0
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Having a negative  means having a finite , which in turn means

that there is an elementary  field in the Lagrangian.


The  can interact as strongly as possible to the  continuum,

but the very fact that there is an elementary field of , with 

whatever  value, is an indication that it might be appropriate 

to work with an elementary .


1) Does the Weinberg analysis apply to the X(3872)? 

2) Can the Weinberg criterion be re-formulated in the 

     framework of EFT?

3) Are there critical  values to compare with? 

r0 Z
X

X DD̄*
X

Z
X

Z
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HDD* =
p2

D*

2mD*
+

p2
D

2mD
−λ0 δ3(r)

π

A perturbation to the  potential derives from  δ3(r)

∫
qiqj eiq⋅r

q2+m2
π−iϵ

d3q ⟶
no rec. ∫

qiqj eiq⋅r

q2−μ2−iϵ
d3q ≈ ∫

qiqj eiq⋅r

q2 − iϵ
d3q

Potential  FT of the propagator in no-recoil approximation=

∫
qiqj eiq⋅r

q2 − iϵ
d3q = −

(2π)3

4π (
3 ̂ri ̂rj

r3
−

δij

r3
−

4π
3

δ3(r))
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HDD* =
p2

D*

2mD*
+

p2
D

2mD
−λ0 δ3(r)

π

A perturbation to the —strong—  potential derives from  δ3(r)

However μ2 = (mD* − mD)2 − m2
π ≃ 43 MeV

Potential  FT of the propagator in no-recoil approximation=

In -wave we have to include the condition 


which, for , leaves only a —weak—  potential. 

S ⟨ ̂ri ̂rj⟩ =
1
3

δij

μ = 0 δ3(r)
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20

Keep  finite! Are the corrections to  of the size ?

Notice that  which is right where the bars in 
the previous figure mostly fall.


In principle the -exchange contribution to  might be negative (it 
does not come from a purely attractive potential) and , or 
smaller,  the  bound state being due to  only (not contributing 
to ).


If so the `Weinberg criterion`, which is fine for the deuteron, would 
just fail for the . Difficult to judge without a calculation, even 
in consideration that  is small.

μ r0 O(1/mπ) or O(1/μ)
(197 MeV fm)/μ ∼ 5 fm

π r0
≈ − 5 fm

DD̄* Vs
r0

X(3872)
Vw
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π

Keep  finite! Are the corrections to  of the size ?μ r0 O(1/mπ) or O(1/μ)

g2

2f 2
π ∫

qiqj eiq⋅r

q2−μ2−iϵ
d3q

(2π)3
=

g2

6f 2
π⏟

α

(δ3(r)+μ2 eiμr

4πr ) δij

⟨ninj⟩ =
1
3

δij

where the integral is decomposed by  and we use the

S-wave relation 

Aδij + B r2 ninj

the contraction with non-rel. polarizations  gives e(λ)
i ē(λ′￼)

j δλλ′￼
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M O L E C U L A R  P I C T U R E

So we have the case in which  itself is not small enough to 

be considered as a perturbation, but it can be divided in  

V

V = Vs + Vw = − (λ0 + 4πα) δ3(r)−αμ2 eiμr

r

To compute any amplitude, all orders in  are needed, and possibly 

only the first order in . 

The contribution deriving from  is calculated in the DWBA (Distorted-
Wave-Born-Approximation) which amounts to use ( in/out)

Vs
Vw

Vw
± =

Tβα = (Ψ−
s β, VwΨ+

s α)



T H E  I M A G I N A R Y  PA R T  O F  Vw(r)
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How to take into account that there are unstable particles in 

the amplitudes  ? We should add `by hand` the  decay width                                
to , but a first principles  derivation of this is possible. 

T D*
Vs + Vw

−
∇2

2m
ψ(r) − [(λ0 + 4πα) δ3(r)+αμ2 eiμr

r
+ i

Γ
2 ] ψ(r) = E ψ(r)

Indeed the complex potential  alone will not allow any imaginary 

part in the positive spectrum  (exception made for s’ 

exponentially blowing up). 

Vw
E > 0 ψ

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini [draft]

(lim
r→0

ℑ(V(r)) = lim
r→0

ℑ αμ2 eiμr

r
=

g2μ3

24πf 2
π

≡
Γ
2 )
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f =
1

k cot δ(k) − ik
= fs + fw =

1

− 1
a − ik

+ fw

fw = −
2m
4k2 ∫ Vw(r) χ2

s (r) dr

Where  are scattering w.f. of the  potential, and  is the 

invariant  mass. Thus   is determined by the  coefficient in the 

double expansion around  and  of the expression

χs(r) δ3(r) m
DD* r0 k2

r0 = 0 α = 0

f −1 =
1

− 1
a − ik

−
2m
4k2 ∫ Vw(r) χ2

s (r) dr

−1

Esposito, Glioti, Germani, ADP, Rattazzi, Tarquini [draft]
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C A L C U L AT I O N  O F  r0

r0 = 2mα ( 2
μ2a2

+
8i

3μa
− 1)

−0.20 fm ≲  Re r0 ≲ − 0.15 fm

0 fm ≲  Im r0 ≲ 0.17 fm

α =
g2

24πf 2
π

=
5 × 10−4

μ2

These results agree, analytically, with what found by Braaten et al.

using EFT. It turns out that the real part of  is just a tiny (negative!)

fraction of a Fermi. This confirms the fact that the Weinberg criterion 

can be extended to the  too. 

r0

X(3872)



Diagrammi e XEFT

Braaten, Galilean invariant XEFT, Phys. Rev. D 103, 036014 (2021),
arXiv:2010.05801 [hep-ph]

Tarquini (Sapienza) Struttura di X(3872) 18/07/2022 12 / 25
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M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 2202.10110

Applying the lattice Lüscher method, the authors study the 

 scattering amplitude and make a determination of 


the scattering length and of the effective range for 
DD*

𝒯cc

a = − 1.04(29) fm
r0 = + 0.96+0.18

−0.20 fm

The mass of the pion is , to keep the  stable.

This result, for the moment, is compatible with a virtual state 

because of the negative  — like the singlet deuteron. 

As for LHCb (2109.01056 p.12)

mπ = 280 MeV D*

a

a = + 7.16 fm
−11.9 ≤ r0 ≤ 0 fm
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ALICE: 1902.09290; 2003.03184

Esposito, Ferreiro, Pilloni, ADP, Salgado Eur. Phys. J. C 81 (2021) 669

Number of deuterons as a function of the multiplicity computed with

Boltzmann equation in a coalescence model. 
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D O E S  T H E  X ( 3 8 7 2 )  B E H AV E  A S  T H E  D E U T E R O N ?

The coalescence picture predicts a behavior (green band) qualitatively

different from data.
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Esposito, Guerrieri, Maiani, Piccinini, Pilloni, ADP, Riquer, Phys. Rev. D 92 (2015) 3, 034028



Bignamini, Grinstein, Piccinini, ADP, Sabelli, PRL103 (2009) 162001

Braaten and Artoisenet, 
PRD81103 (2010) 114018
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Maiani, ADP, Riquer PLB 778 (2018) 247 Maiani, Piccinini, ADP, Riquer PRD71 (2005) 014028

If  is degenerate with  it can’t decay in  — it is forced to

decay in , tunneling the heavy quark at a higher price in rate.


The  might still be hiding in  decays.  


This picture of `segregated diquarks` inspired the idea of `segregated

hevay-quarks`,  kept away by color repulsion in the octet. 

X± X0 D±D̄*
J/ψρ±

X± J/ψρ±
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c c̄

q̄ q̄

R

8c

8c

The fast motion of light quarks, in the field of heavy quarks (slow),

generates an effective potential  which in turn regulates the 

slower motion of heavy quarks — and can be used to calculate 

the spectrum.

The same picture might work for the  states, and for 

the pentaquarks!

V(R)

𝒯cc and 𝒯bb

Maiani, ADP, Riquer, Phys.Rev.D 100 (2019) 1, 014002; Phys.Rev.D 100 (2019) 7, 074002; EPJC83 (2023) 5, 378 

Maiani, Pilloni, ADP, Riquer, PLB836 (2023) 137624 (on )𝒯cc in B.O.

Esposito, Papinutto, Pilloni, ADP, Tantalo, Phys Rev D88 (2013)  5, 054029  (on )𝒯cc prediction
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Maiani, Pilloni, ADP, Riquer, PLB836 (2023) 137624  (on )𝒯cc in B.O.

T = (QQ)3̄, (q̄q̄)3⟩1
=

1
3

(q̄Q)1, (q̄Q)1⟩1
−

2
3

(q̄Q)8, (q̄Q)8⟩1

V(r) =
λQq̄

r
+ kQq̄ r + V0 = −

1
3

αs

r
+

1
4

k r + V0

λQq̄ = [ 1
3

×
1
2 (−

8
3 ) +

2
3

×
1
2 (3 −

8
3 )] αs = −

1
3

αs

R1 ⊗ R2 = ⨁
j

1
2

(CSj
− CR1

− CR2
)1Sj

The potential inside a single orbital is given by

using the diagonalization formula ( )R1 ⊗ R2 = S1 ⊕ S2 ⊕ …

Assume this is the ground state
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δV = λQq̄ ( 1
|ξ − R |

+
1

|η + R | ) +
λqq̄

|ξ − R − η |

c c

q̄ q̄

ξ

R

η

VBO(R) = −
2
3

αs
1
R

+ (Ψ(ξ, η, R), δV Ψ(ξ, η, R))

M(𝒯+
cc)th. = 3871 MeV M(𝒯+

cc)exp. = 3875 MeV

M(𝒯bb)th. = 10552 MeV



T H E   G R O U N D  S TAT E𝒯QQ
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Maiani, ADP, Riquer, Phys.Rev.D 100 (2019) 1, 014002; Phys.Rev.D 100 (2019) 7, 074002; EPJC83 (2023) 5, 378


Rattazzi & al. observe that the  and  mix [in preparation]. Also get two bound states, two

types of tetraquarks.

(QQ)3̄ (QQ)6



T H E   G R O U N D  S TAT E𝒯QQ
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Maiani, ADP, Riquer, Phys.Rev.D 100 (2019) 1, 014002; Phys.Rev.D 100 (2019) 7, 074002; EPJC83 (2023) 5, 378


Rattazzi & al. observe that the  and  mix [in preparation]. Also get two bound states, two

types of tetraquarks.

(QQ)3̄ (QQ)6
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c c̄

q q

R

8c

8cq

The three light quarks in the pentaquark  have to be in a 

color-octet configuration (a mixed representation). 


We show that Fermi statistics applied to the complex of the 

three light quarks requires three SU(3)   octets, two with spin 1/2 

and one with spin 3/2. Additional lines corresponding to 

decays into  and  are predicted. 

f

J/ψ + Σ J/ψ + Ξ

Maiani, ADP, Riquer, Eur. Phys. J. C 83 (2023) 5, 378



T H E  E Q U A L  S PA C I N G  R U L E
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In the vector mesons octet 

K* ≈ (ϕ + ρ)/2

The analog of  in the hidden charm tetraquarks isϕ

X(1++) = [cs][c̄s̄] X(4140) seen in J/ψϕ

To first order in SU(3) flavor symmetry breaking we might predict

Zcs
!= (X(4140) + X(3872))/2 = 4009 MeV

A  has been observed at 4003 MeV.Zcs

Maiani, ADP, Riquer, Sci. Bulletin 66, 1616 (2021)



 A N D  N E G AT I V E  C H A R G E  C O N J U G AT I O NZcs
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B+ → ϕ + Z+
cs(4003) → ϕ + K+ + J/ψ

Observed by LHCb in the decay

In the diquark-antidiquark model we predict 

that . Using the same spacing rules,

given the  and the recently discovered  we

predict a 

M(X(1++)) = M(Z(1+−))
Z(3900) Zcs(3985)
Zss( ≃ 4076)

Maiani, ADP, Riquer, Sci. Bulletin 66, 1616 (2021)
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• It would be useful to have new comparative studies on the  of 
the X(3872) and of the  particles, and to agree on the way to 
extract information from data (not easy).


• It would be of great relevance to learn more, on the experimental 
side, about deuteron production at high  .


• Some states are produced promptly in  collisions, some are not. 
There is no clear reason why. 


• Are there loosely bound molecules  Can we formulate more 
stringient bounds on  particles?


• Derive Weinberg criterium in a modern language.

• More basically: are we on the right questions?

r0
𝒯QQ

pT
pp

BB̄*?
X±



B A C K U P
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f =
1

k cot δ(k) − ik

k cot δ = −
1
a

+
1
2

Λ2
∞

∑
n=0

rn ( p2

Λ2 )
n+1

r(Λ)

= −
1
a

+
1
2

r0k2 + …

In  scattering  where we assume that baryons

interact through a scalar particle with mass  and .                                                        
From the lineshape of the  one finds .  

In doing a low momentum expansion we need  or , 

i.e. much below the cutoff . 

Better to expand in  retaining  

NN |1/a | ≪ Λ
Λ |rn | ∼ 1/Λ

X 1/a ∼ 28 MeV < μ < mπ
ak < 1 k < 1/a

μ
(k /Λ) ka

f = −
1

(1 − x)( 1
a + ik)

= −
(1 + x + x2 + …)

( 1
a + ik)

, x =
r(Λ)

( 1
a + ik)
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fBorn = −
m
2π ∫ V(r) ei(k−k′￼)⋅rd3r

eik⋅r =
∞

∑
ℓ=0

iℓjℓ(kr)(2ℓ + 1)Pℓ(k̂ ⋅ ̂r)

e−ik′￼⋅r =
∞

∑
ℓ=0

iℓjℓ(k′￼r)(2ℓ + 1)(−1)ℓPℓ(k̂′￼⋅ ̂r)

∫ Pℓ(n1 ⋅ n2)Pℓ′￼(n1 ⋅ n3)dΩ1 = δℓℓ′￼

4π
(2ℓ + 1)

Pℓ(n2 ⋅ n3)

(−1)ℓi2ℓ = + 1 for every ℓ, and k = k′￼ for elastic collisions

Expand
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f = − 2m
∞

∑
ℓ=0

(2ℓ + 1)Pℓ(cos θ)∫ V(r)( jℓ(kr))2r2dr

So we get 

To be compared with Holtsmark formula 

f =
∞

∑
ℓ=0

(2ℓ + 1)Pℓ(cos θ)
eiδ sin δ

k

eiδ sin δ
k

= − 2m∫ V(r)( jℓ(kr))2r2dr

giving

A  D E R I VAT I O N  O F  T H E  D W B A  F O R M U L A
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χ(0)(r) = 2kr jℓ(kr)

A  D E R I VAT I O N  O F  T H E  D W B A  F O R M U L A

Now consider . DWBA consists in computing 

 with the in/out states of , . Thus

V = Vs + Vw

Tβα = (Ψ−
s β, VwΨ+

s α) Vs Ψ±
sα

f =
eiδs sin δs

k
+

eiδw sin δw

k

fw =
eiδw sin δw

k
= −

2m
4k2 ∫

∞

0
Vw(r) χ2

s (r) dr

Where we substituted χ(0) → χs

eiδ sin δ
k

= −
2m
4k2 ∫ V(r) χ(0)(r)2 dr
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• Use  in place of  and in the final expression set 


• Use the regularized*                                    

for   and   for  


• The integral is finite. Use*  


• Double-expand the result around  and .

• Take the  limit

• Set               

e−μr eiμr μ → − iμ

χI
s(r) = 2kr ( eiδ sin(kr + δ)

kr
−

eiδ sin δ
kr )

r ∈ [0,λ] χII
s (r) = 2kr ( eiδ sin(kr + δ)

kr ) r ∈ [λ, ∞]

δ = cot−1 (−
1

kas )
k = 0 α = 0

λ → 0
μ → − iμ

*R. Jackiw, `Delta Function Potentials in two- and three- dimensional quantum mechanics` in 

Diverse Topics in Theoretical and Mathematical Physics, World Scientific.

See also Gosdzynsky, Tarrach (https://doi.org/10.1119/1.16691) — suggested by Adam Szczepaniak.
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The scattering length in the formula of  is taken from data:

it is a renormalized scattering length .  

The renormalization is required by the UV divergences appearing 

in the calculation of  — due to scales  cutoff.   

r0
a = aR

r0 r < ϵ

as

aR
= 1 − (2αμμr)[ 1

aRμ
+ γEμaR + 2i + μaR (log(ϵμ) − i

π
2 )]

where k cot δ = − 1/as
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X(3872) Z0±
c (3900) Z0±

c (4020) Z0±
b (10610) Z0±

b (10650)

D0D̄*0 D0D̄*0± D*0D̄*0± B0B̄*0± B*0B̄*0±

δ ≈ 0 +28 +6.7 +5 +1.8
(MeV)
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An elementary deuteron would not correspond to  but 

to whatever . Strictly speaking, only the case  

corresponds to the exclusively composite state.


Indeed it can be shown that the following sum rule holds


                                         


which corresponds to


                                  


Z = 1
0 < Z < 1 Z = 0

∫
∞

0
ρ(μ2) dμ2 = 1

Z + ∫
∞

0
σ(μ2) dμ2 = 1



` N U C L E A R  D E M O C R A C Y `

51

“A proton could be obtained from a neutron and a 
pion, or from a  and a , or from two nucleons and 
one anti-nucleon, and so on. Could we therefore say 
that a proton consists of continuous matter? […] There 
is no difference in principle between elementary 
particles and compound systems.” 

Λ K

– W E R N E R  H E I S E N B E R ,  1 9 7 5  TA L K  AT  G E R M A N  P H Y S I C A L  S O C I E T Y


