New unbinned method to combine $\psi(3770) \rightarrow D\overline{D}$ and $B \rightarrow DK$ data

Making γ more precise by optimising information usage.

E Gersabeck, J Lane, <u>J Rademacker</u>: arXiv:2305.10787 (2023)

Unitarity triangle

Unitarity triangle

LHCb: JHEP 02 (2021) 169

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLV) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

CLEO-c/BES III's unique data provide additional information on D mesons.

CLEO-c/BES III's unique data provide additional information on D mesons.

<u>Two</u> measurements for each point in Dalitz space - can extract magnitude <u>and</u> phase!

BESIII: <u>PRL 124 (2020) 24, 241802</u> CLEO-c: Phys. Rev. D80, 032002 (2009), updated in <u>Phys.Rev. D82 (2010) 112006</u>

CLEO-c/BES III's unique data provide additional information on D mesons.

<u>Two</u> measurements for each point in Dalitz space - can extract magnitude <u>and</u> phase!

BESIII: <u>PRL 124 (2020) 24, 241802</u> CLEO-c: Phys. Rev. D80, 032002 (2009), updated in <u>Phys.Rev. D82 (2010) 112006</u>

Model-independent, binned approach

One complex number per bin-pair, $c_i + is_i$, contains the key information uniquely accessible at CLEO-c/BES III, which is related to the phases the D^0 and \overline{D}^0 decay amplitudes.

New unbinned method

E Gersabeck, J Lane, JR: <u>arXiv:2305.10787</u> (2023)

Carefully optimised binning

New unbinned method

Carefully optimised binning

New unbinned method

E Gersabeck, J Lane, JR: arXiv:2305.10787 (2023)

Carefully optimised binning

New, unbinned modelindependent method

Other unbinned methods exist: Poluektov, <u>Eur.Phys.J.C 78 (2018) 2, 121</u>; Backus et al, <u>arXiv:2211.05133</u>. In contrast to these and the binned method, we do not do any integration, averaging or projection from 2D to 1D, and therefore do not suffer the associated information loss.

Best statistical precision on γ is achieved with an unbinned model*dependent* method. So let's have a look at those models.

1.2M signal events (BELLE) 94% signal purity

PRD 98 (2018) 11, 112012

Unbinned quasi model-independent (QMI) method

- The magnitudes of amplitude models are OK and can be verified on data.
- Violation of unitarity and analyticity in models destroys link between magnitude and phase - the models' phases are uncertain.
- Idea: Keep models' magnitudes, but correct phases in modelindependent way.

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

In all relevant decay rates, at the charm threshold and in B decays, phases enter through interference terms between D^0 and \overline{D}^0 decay amplitudes, e.g. for D^0 from B^-

$$\Gamma^{-}(s_{+}, s_{-}) \propto r_{D}^{2}(s_{+}, s_{-}) + r_{B}^{2} + 2r_{D}(s_{+}, s_{-})r_{B}\cos\left(\delta_{B} - \gamma - \delta_{D}(s_{+}, s_{-})\right)$$

$$\Gamma^{+}(s_{-}, s_{+}) \propto r_{D}^{2}(s_{+}, s_{-}) + r_{B}^{2} + 2r_{D}(s_{+}, s_{-})r_{B}\cos\left(\delta_{B} + \gamma - \delta_{D}(s_{+}, s_{-})\right)$$

We correct this term, the phase difference of the D^0 and \overline{D}^0 decay amplitudes to the same phase space point: $\delta_D = \delta_D^{\text{model}} + \delta_D^{\text{corr}}$

Idea: Generic parametrisation of deviation of phase from model-prediction <u>arXiv:2305.10787</u> (2023)

$$\delta(s_+, s_-) = \delta^{\text{model}}(s_+, s_-) + \delta^{\text{corr}}(s_+, s_-)$$

 $\delta^{\text{corr}}(s_+, s_-) = \text{polynomial in } s_+, s_-, \text{ determined in}$ simultaneous fit to $B^{\pm} \to DK^{\pm}$ and $\psi(3770) \to D\overline{D}$ data

Symmetry: $\delta(s_+, s_-) = -\delta(s_-, s_+)$ $\delta^{\text{corr}}(s_+, s_-) = -\delta^{\text{corr}}(s_-, s_+)$

Rotate and stretch

arXiv:2305.10787 (2023)

only odd powers of $z''_{-} \propto s_{-} - s_{+}$, ensures that $\delta^{\text{corr}}(s_{+}, s_{-}) = -\delta^{\text{corr}}(s_{-}, s_{+})$

Generate Babar & BELLE amplitude model with modified phase difference $\delta(s_+, s_-)$

$$\delta_1^{\text{bias}} = \operatorname{erf}\left(\frac{s_+ - s_-}{\varepsilon}\right)g(s_+, s_-)$$

where g is a 2-D Gaussian,
mirror reflected at $s_+ = s_-$

Fit starts from un-modified model - will it be able to find $\delta^{\rm corr} \approx \delta_1^{\rm bias}$ to a sufficient approximation?

Generate Babar & BELLE amplitude model with modified phase difference $\delta(s_+, s_-)$

This is a sum of two gaussian bias functions

Fit starts from un-modified model - will it be able to find $\delta^{\rm corr} \approx \delta_2^{\rm bias}$ to a sufficient approximation?

$x_{\pm} = r_B \cos(\delta_B \pm \gamma) $ Deviation of δ $y_{\pm} = r_B \sin(\delta_B \pm \gamma) $ Deviation of δ from model in \rightarrow event generation δ δ^{bias}										
Order	$\Delta x_+ \cdot 100$	$\Delta y_+ \cdot 100$	$\Delta x_{-} \cdot 100$	$\Delta y_{-} \cdot 100$	1.0 -					
MD	$+1.3\pm0.8$	$+1.2 \pm 1.1$	-1.0 ± 1.3	-3.3 ± 1.3	0.5 -					
1	$+1.1\pm0.8$	$+0.5\pm1.0$	-1.3 ± 0.8	-0.6 ± 1.0	0.5 1.0 1	$m_{K_{S}^{2}\pi^{+}14}^{2.5 2.0 2.5 3.0} - 1$ rad				
2	$+0.5\pm0.9$	$+0.1\pm1.0$	-1.0 ± 0.8	$+0.4 \pm 1.0$						
3	$+0.6\pm0.8$	0.0 ± 1.0	-1.2 ± 0.8	$+0.4 \pm 1.0$						
4	$+0.3\pm0.8$	$+0.4 \pm 1.0$	-0.8 ± 0.8	$+0.3\pm1.0$						
5	$+0.4\pm0.8$	$+0.5\pm1.0$	-0.7 ± 0.8	$+0.3\pm1.0$						
6	$+0.3\pm0.8$	$+0.7\pm1.0$	-0.8 ± 0.8	$+0.4 \pm 1.0$						
7	$+0.3\pm0.8$	$+0.5\pm1.0$	-0.9 ± 0.8	$+0.7\pm1.0$						
8	$+0.3\pm0.8$	$+0.5\pm1.0$	-0.9 ± 0.8	$+0.7\pm1.0$						
9	$+0.3\pm0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	$+0.7\pm1.0$						

LHCb yields as in <u>JHEP 02 (2021) 169</u> BESIII yields as in: <u>PRL 124 (2020) 24, 241802, PRD 101 (2020) 11200</u>

LHCb yields as in <u>JHEP 02 (2021) 169</u> BESIII yields as in: <u>PRL 124 (2020) 24, 241802, PRD 101 (2020) 11200</u>

LHCb yields as in <u>JHEP 02 (2021) 169</u> BESIII yields as in: <u>PRL 124 (2020) 24, 241802</u>, <u>PRD 101 (2020) 11200</u>

LHCb yields as in <u>JHEP 02 (2021) 169</u> BESIII yields as in: <u>PRL 124 (2020) 24, 241802</u>, <u>PRD 101 (2020) 11200</u>

LHCb yields as in <u>JHEP 02 (2021) 169</u> BESIII yields as in: <u>PRL 124 (2020) 24, 241802, PRD 101 (2020) 11200</u>

Pull studies, 100 fits

A new method for the optimal precision on γ

Precision on γ with $B^+ \to DK^+, D \to K_S \pi \pi$

arXiv:2305.10787 (2023)

		$\sigma_{\gamma}(°)$		
Lumi		new QMI	Model- dependent	8 bins, fixed* ci, si
1xLHCb	1xBESIII	4.2	4.2	5.1
1xLHCb	10xBESIII	4.2		
100xLHCb	1xBESIII	0.45	0.42	0.52
100xLHCb	10xBESIII	0.43		

*) additional uncertainty on binned γ fit due to finite BESIII data for 1xBESIII: 1.2° PRD 101 (2020) 11200

(average error reported in 100 pseudo experiments)

(BTW, ultimate precision on γ achieved through combining multiple decay modes)

Eva Gersabeck, Jake Lane, Jonas Rademacker

A new method for the optimal precision on γ

Eva Gersabeck, Jake Lane, Jonas Rademacker

New unbinned method (arXiv:2305.10787) makes optimal use of the information contained in $\psi(3770) \rightarrow D\overline{D}$ and $B^{\pm} \rightarrow DK^{\pm}$ data for a better precision on γ .

The End

- The CKM angle γ allows a beautifully "clean" measurement with negligible theory uncertainty.
- Future datasets will allow an exquisitely precise measurement of γ .
- Model-independent methods *required* to truly benefit from these data. These rely on combining BES III and $B \rightarrow DK$ data.
- New unbinned method (arXiv:2305.10787) exploits the information contained in both types of data optimally for better precision on γ .

The future

$B^- \to DK^-; D \to \pi^+ \pi^- \pi^+ \pi^-, K^+ K^- \pi^+ \pi^-$

- Also expect good precision from other four-body modes.
- CP-even fractions measured by BES III. $F_+(D^0 \to K^+K^-\pi^+\pi^-) = 0.730 \pm 0.037 \pm 0.021$ BESIII: <u>PRD 107 (2023) 3, 032009</u> $F_+(D^0 \to \pi^+\pi^-\pi^+\pi^-) = 0.735 \pm 0.015 \pm 0.005$ BESIII: <u>PRD 106 (2022) 9, 092004</u>
- Recently studied at LHCb: <u>arXiv:2301.10328</u>. Expect excellent sensitivity with binned c_i , s_i .
- Binned c_i , s_i measured by CLEO-c for $D^0 \rightarrow 4\pi$, but not for $D^0 \rightarrow KK\pi\pi$ (lack of statistics).
- Precise measurements from BESIII for both modes would have significant impact.

B- decay rate

$$\Gamma^{-}(s_{+}, s_{-}) \propto |A_{D}|^{2} + r_{B}^{2} |\overline{A}_{D}|^{2} + 2\operatorname{Re}\left(A_{D}\overline{A}_{D}^{*}r_{B}e^{-i(\delta_{B}-\gamma)}\right)$$
$$\propto |A_{D}|^{2} + r_{B}^{2} |\overline{A}_{D}|^{2} + 2|A_{D}||\overline{A}|_{D}r_{B}\cos\left(\delta_{B}-\gamma-\delta_{D}(s_{+}, s_{-})\right)$$

Similarly for CP-conjugate process, but with $\gamma
ightarrow - \gamma$

We correct this term, the phase difference of the D^0 and \overline{D}^0 decay amplitudes to the same phase space point: $\delta_D = \delta_D^{\text{model}} + \delta_D^{\text{corr}}$

The Big Picture

LHCb UGII physics: arXiv:1808.08865

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	$0.1 \ [274]$	0.025	0.036	0.007	_
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ [275]$	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}	_	0.08,0.06,0.18	_	0.02, 0.02, 0.05	_
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{ m s}^0$	0.04 [609]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [44]	14 mrad	—	4 mrad	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	_	$9 \mathrm{mrad}$	—
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	_	11 mrad	Under study [611]
$a_{ m sl}^s$	$33 \times 10^{-4} \ [211]$	10×10^{-4}	_	3×10^{-4}	_
$\left V_{ub} ight /\left V_{cb} ight $	$6\% \ [201]$	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$90\% \ [264]$	34%	_	10%	$21\% \ [612]$
$ au_{B^0_s ightarrow\mu^+\mu^-}$	22% [264]	8%	_	2%	_
$S_{\mu\mu}$	_	_	_	0.2	_
$b ightarrow c \ell^- ar{ u_l} ~{ m LUV} ~{ m studies}$					
$\overline{R(D^*)}$	$0.026\ [215, 217]$	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	_	0.02	_
<u>Charm</u>					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	$1.7 imes 10^{-4}$	5.4×10^{-4}	3.0×10^{-5}	_
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	$3.5 imes 10^{-4}$	1.0×10^{-5}	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	3.2×10^{-4}	$4.6 imes 10^{-4}$	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	_

Winning by binning in 5 dimensions... e.g. $D \rightarrow \pi \pi \pi \pi$

Binning based on phase difference between D° and D° amplitudes going to same point in phase space, like optimised binning for K_{S,L} ππ. This approach requires a model.
 Examples of 2-D slices through 5-D phase space based on D→ππππ amplitude model in JHEP 1705 (2017) 143.

Harnew et al, using CLEO-c data: JHEP 1801 (2018) 144

The LHCb Detector

Comparing methods

LHCb	σ_{x_+}	$\cdot \ 10^{2}$	σ_{y_+}	$\cdot \ 10^{2}$	σ_{x-}	$\cdot 10^2$	σ_{y}	$\cdot \ 10^{2}$	σ_{γ}	$(^{\circ})$
Lumi	MD	bin	MD	bin	MD	bin	MD	bin	MD	bin
$\times 1$	0.780	0.886	1.081	1.482	0.878	1.189	0.939	1.328	4.23	5.09
$\times 100$	0.078	0.089	0.108	0.149	0.088	0.118	0.093	0.134	0.42	0.52

Lumi s	scenario:					
LHCb	BES III	$\sigma_{x_+}\cdot 10^2$	$\sigma_{y_+}\cdot 10^2$	$\sigma_{x-}\cdot 10^2$	$\sigma_{y} \cdot 10^2$	σ_γ (°)
$\times 1$	$\times 1$	0.780	1.091	0.877	0.945	4.21
$\times 1$	$\times 10$	0.773	1.062	0.866	0.924	4.18
$\times 100$	$\times 1$	0.079	0.122	0.090	0.104	0.45
$\times 100$	$\times 10$	0.078	0.115	0.089	0.099	0.43

A new method for the optimal precision on γ

Eva Gersabeck, Jake Lane, Jonas Rademacker

CHARM 2023, Siegen 40

Parameter counting

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

- Binning such that such that $c_i = c_{-i}$, $s_i = -s_{-i}$
- Parameter counting: Number of bins: Dividing Dalitz plot into N bin pairs gives 4N bins (2N for the second se
- In practice, to achieve good precision on γ , input from threshold to constrain c_i, s_i is absolutely critical.

$B^{\pm} \rightarrow DK^{\pm}, D \rightarrow K_S \pi^+ \pi^-$ at LHCb

LHCb: JHEP 02 (2021) 169

12.5k signal events

Input to LHCb γ combination

<u>LHCb-CONF-2022-003</u> <u>JHEP 12 (2021) 141</u>

LHCb

<i>B</i> decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[30]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[18]	Run 1&2	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	[19]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[31]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \to D h^{\pm} \pi^+ \pi^-$	$D ightarrow h^+ h^-$	[34]	Run 1	As before
$B^0 \to DK^{*0}$	$D ightarrow h^+ h^-$	[35]	Run $1\&2(*)$	As before
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[35]	Run $1\&2(*)$	As before
$B^0 \to DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[36]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B^0_s \to D^{\mp}_s K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[38]	Run 1	As before
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[39]	Run 1&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [14]
$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[24, 40, 41]	Run 1&2	As before
$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	[16, 24, 25]	Run 2	New
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[42]	Run 1	As before
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[15]	Run 2	New
$D^0 ightarrow h^+ h^-$	ΔY	[43-46]	Run 1&2	As before
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[47]	Run 1	As before
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[48]	Run $1\&2(*)$	As before
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[49]	Run 1	As before
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	x, y	[50]	Run 1	As before
$D^0 \to K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[51]	Run 1	As before
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[52]	Run 2	As before
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- \ (\mu^- \ {\rm tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[17]	Run 2	New

BES III and others

Decay	Parameters	Source	Ref.	Status since
				Ref. [14]
$B^\pm \to D K^{*\pm}$	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[33]	As before
$B^0 \to DK^{*0}$	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[53]	As before
$B^0 \to D^{\mp} \pi^{\pm}$	β	HFLAV	[13]	As before
$B^0_s \to D^\mp_s K^\pm(\pi\pi)$	ϕ_s	HFLAV	[13]	As before
$D \to K^+ \pi^-$	$\cos \delta_D^{K\pi}$, $\sin \delta_D^{K\pi}$, $(r_D^{K\pi})^2$, x^2 , y	CLEO-c	[27]	New
$D \to K^+ \pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^{0}}, r_{D}^{K\pi} \cos \delta_{D}^{K\pi}, r_{D}^{K\pi} \sin \delta_{D}^{K\pi}$	BESIII	[28]	New
$D \to h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0}, F^+_{KK\pi^0}$	CLEO-c	[54]	As before
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c+BESIII	[26, 54]	Updated
$D\to K^+\pi^-\pi^0$	$r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[55-57]	As before
$D\to K^\pm\pi^\mp\pi^+\pi^-$	$r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[49, 55-57]	As before
$D\to K^0_{\rm S}K^\pm\pi^\mp$	$r_D^{K_{ m S}^0 K \pi}, \delta_D^{K_{ m S}^0 K \pi}, \kappa_D^{K_{ m S}^0 K \pi}$	CLEO	[58]	As before
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K_{\rm S}^0 K \pi}$	LHCb	[59]	As before

LHCb-CONF-2022-003 JHEP 12 (2021) 141

L	_HC	b				BES III a	nc	d others	5	
<i>B</i> decay	D decay	Ref.	Dataset	Status since Ref. [14]	Decay	Parameters		Source	Ref.	Status since Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h$							LHCb	[33]	As before
$B^\pm \to D h^\pm$	$D \to h$	Too	much	for on		la ta ha		LHCb	[53]	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to k$	100	nucr		e siic			HFLAV	[13]	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h$		- - -		- ! - 1			HFLAV CLEO c	[13]	As before Now
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to k$	read	able.	Kev D	Dint:	it's a lot.	$\delta^{K\pi}$	CLEO-c BESIII	[27]	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K$						0_D	CLEO-c	[20] [54]	As before
$B^{\perp} \rightarrow D^* h^{\perp}$	$D \rightarrow h$	Д	nd th	iere's r	nore	e a		CLEO-c+BESIII	[26, 54]	Updated
$B^{\pm} \rightarrow DK^{*\pm}$ $D^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h$ $D \rightarrow h$,			1010,	0.9.		CLEO-c+LHCb+BESIII	[55-57]	As before
$B^- \rightarrow DK^-$ $B^{\pm} \rightarrow Dh^{\pm}\pi^+\pi^-$	$D \rightarrow h$ $D \rightarrow h$							CLEO-c+LHCb+BESIII	[49, 55-57]	As before
$B^{0} \rightarrow DK^{*0}$	$D \rightarrow h$ $D \rightarrow h$							CLEO	[58]	As before
$B^0 \rightarrow DK^{*0}$	$D \to h$				nonto	an D	- 1-	LHCb	[59]	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow k$	DEJI	ппеа	asuren	Ients	$0 \cap D \rightarrow$				
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow$	TZ ⊥	_ 0							
$B^0_s \to D^{\mp}_s K^{\pm}$	$D_s^+ \rightarrow$	$K_{S}\pi^{T}$	$\tau^-\pi^\circ$ is	<u>arXiv:23</u>	<u>)5.035</u>	<u>975</u> (2023)				
$B_s^0 \to D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow$									
D decay	Observ	$K^+K^-\pi$	$^+\pi^-$ F	PRD 107	(2023)	3) 3. 032009				
$D^0 \rightarrow h^+ h^-$	ΔA_{CD}				-					
$D^0 \to K^+ K^-$	$A_{CP}(K)$									
$D^0 \rightarrow h^+ h^-$	$y_{CP} - i$									
$D^0 ightarrow h^+ h^-$	$y_{CP} - i$		Ch m	easure	men	ts with				
$D^0 \rightarrow h^+ h^-$	ΔY			ouourc						
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x)$		R^{\pm}	$ \rightarrow DK^{\pm}$	_ ת	_				
$D^0 \to K^+\pi^-$ (Double Tag)	$R^{\pm}, (x)$		D -	$\rightarrow D\Lambda$, D -	7				
$D^0 \rightarrow K^{\pm}\pi^{+}\pi^{-}\pi^{-}$ $D^0 \rightarrow K^0 - \pm$	$(x^2 + y)$		K^+K^-	$\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	$+\pi^-\pi$	$+\pi^{-}$				
$D^{*} \rightarrow \Lambda_{\tilde{S}} \pi^{+} \pi^{-}$ $D^{0} \rightarrow K^{0} \pi^{+} \pi^{-}$	x, y	-		<i>, , , , , , , , , , , , , , , , , , , </i>		JL				
$D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$	x_{CP}, y_{C}		arXiv/2	201 102	228 (2)	723)				
$D^0 \to K^0_{\rm S} \pi^+ \pi^- \ (\mu^- \ {\rm tag})$	x_{CP}, y_C x_{CP}, y_C					0201				

LHCb γ combination

Unbinned model-independent

- Project 2-D Dalitz plot onto 1D.
- Use amplitude model to associate each point in phase space to a phase difference $\delta^{\rm model}$.
- $c_i, s_i \rightarrow C(\delta^{\text{model}}), S(\delta^{\text{model}})$, functions C, S parameterised in a generic way (Fourier series)

Expect precision between binned and model-dependent approach.

Ant

Other unbinned methods exists

- Anton Poluektov: <u>Eur.Phys.J.C 78 (2018) 2, 121</u>. Projects 2-D Dalitz plot onto 1D. Achieves precision between binned and model-dependent approach.
- Jeffrey V. Backus et al, <u>arXiv:2211.05133</u>, integrate over the 2-D Dalitz plot in an unbinned way. Get a precision of ~5° for similar data set sizes we use, however, comparison is difficult due to different assumptions on the values of γ and δ_B , and implementation differences in amplitude model.
- In contrast to these methods and the binned method, we do not do any integration, averaging or projection and therefore do not suffer the associated information loss.

Eva Gersabeck, Jake Lane, Jonas Rademacker

$B^{\pm} \to Dh^{\pm}$ $D \rightarrow h^+ h^-$ [29]Run 1&2 As before $B^{\pm} \rightarrow Dh^{\pm}$ $D \rightarrow h^+ \pi^- \pi^+ \pi^-$ [30]Run 1 As before

LHCb

D decay

B decay

Input to LHCb γ combination

Ref.

Dataset

Status since Ref. [14]

DIDN		[00]	Itun I	110 001010
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[18]	Run 1&2	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	[19]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[31]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D ightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[33]	Run $1\&2(*)$	As before
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^+ h^-$	[34]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D ightarrow h^+ h^-$	[35]	Run $1\&2(*)$	As before
$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[35]	Run $1\&2(*)$	As before
$B^0 \rightarrow DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	[36]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	[38]	Run 1	As before
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[39]	Run 1&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [14]
$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[24, 40, 41]	Run 1&2	As before
$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	[16, 24, 25]	Run 2	New
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[42]	Run 1	As before
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[15]	Run 2	New
$D^0 \rightarrow h^+ h^-$	ΔY	[43-46]	Run 1&2	As before
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[47]	Run 1	As before
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[48]	Run $1\&2(*)$	As before
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[49]	Run 1	As before
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	x, y	[50]	Run 1	As before
$D^0 \to K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[51]	Run 1	As before
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[52]	Run 2	As before
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- \; (\mu^- \; {\rm tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[17]	Run 2	New

BES III and others

LHCb-CONF-2022-003

<u>JHEP 12 (2021) 141</u>

Decay	Parameters	Source	Ref.	Status since
				Ref. [14]
$B^\pm \to D K^{*\pm}$	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[33]	As before
$B^0 \to DK^{*0}$	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[53]	As before
$B^0 \to D^{\mp} \pi^{\pm}$	β	HFLAV	[13]	As before
$B^0_s \to D^\mp_s K^\pm(\pi\pi)$	ϕ_s	HFLAV	[13]	As before
$D \to K^+ \pi^-$	$\cos \delta_D^{K\pi}, \sin \delta_D^{K\pi}, (r_D^{K\pi})^2, x^2, y$	CLEO-c	[27]	New
$D \to K^+ \pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^{0}}, r_{D}^{K\pi} \cos \delta_{D}^{K\pi}, r_{D}^{K\pi} \sin \delta_{D}^{K\pi}$	BESIII	[28]	New
$D \to h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0}, F^+_{KK\pi^0}$	CLEO-c	[54]	As before
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c+BESIII	[26, 54]	Updated
$D\to K^+\pi^-\pi^0$	$r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[55-57]	As before
$D\to K^\pm\pi^\mp\pi^+\pi^-$	$r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[49, 55-57]	As before
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K_{ m S}^0 K \pi}, \delta_D^{K_{ m S}^0 K \pi}, \kappa_D^{K_{ m S}^0 K \pi}$	CLEO	[58]	As before
$D\to K^0_{\rm S}K^\pm\pi^\mp$	$r_D^{K_S^0K\pi}$	LHCb	[59]	As before

 $\gamma = 63.8^{\circ + 3.5^{\circ}}_{-3.7^{\circ}}$

Input to LHCb γ combination

JHEP 12 (2021) 141

LHCb-CONF-2022-003

	LHCb	BES III and	d other	S	
B deca	y D decay Ref. Dataset Status since Decay Ref. [14]	Parameters	Source	Ref.	Status since Ref. [14]
$\begin{array}{c} B^{\pm} \rightarrow \\ B^{\pm} \rightarrow \end{array}$	Too much for one slide to be readable. Key point: It's a lot. And there's more, e.g.	$ \begin{array}{c} \kappa_{B^{\pm}}^{DK^{*\pm}} \\ \kappa_{B^{0}}^{DK^{*\pm}} \\ \beta \\ \end{array} \\ \tau) \phi_{s} \\ \cos \delta_{D}^{K\pi}, \sin \delta_{D}^{K\pi}, (r_{D}^{K\pi})^{2}, x^{2}, y \\ A_{K\pi}, A_{K\pi}^{\pi\pi\pi^{0}}, r_{D}^{K\pi} \cos \delta_{D}^{K\pi}, r_{D}^{K\pi} \sin \delta_{D}^{K\pi} \\ F_{\pi\pi\pi^{0}}^{+}, F_{KK\pi^{0}}^{+} \\ F_{4\pi}^{+} \\ r_{D}^{K\pi\pi^{0}}, \delta_{D}^{K\pi\pi^{0}}, \kappa_{D}^{K\pi\pi^{0}} \\ - r_{D}^{K3\pi}, \delta_{D}^{K3\pi}, \kappa_{D}^{K3\pi} \\ r_{D}^{K_{0}^{0}K\pi}, \delta_{D}^{K_{0}^{0}K\pi}, \kappa_{D}^{K_{0}^{0}K\pi} \\ r_{D}^{K_{0}^{0}K\pi}, \delta_{D}^{K_{0}^{0}K\pi}, \kappa_{D}^{K_{0}^{0}K\pi} \\ \end{array} $	LHCb LHCb HFLAV CLEO-c BESIII CLEO-c CLEO-c+BESIII CLEO-c+LHCb+BESIII CLEO-c+LHCb+BESIII CLEO LHCb	[33] [53] [13] [13] [27] [28] [54] [26,54] [55–57] [49,55–57] [58] [59]	As before As before As before As before New As before Updated As before As before As before As before
$B^{0} \rightarrow$ $B^{0} \rightarrow$ $B^{0} \rightarrow$ $B^{0}_{s} \rightarrow$ $B^{0}_{s} \rightarrow$ $D \text{ deca}$ $D^{0} \rightarrow$	BES III measurements on $D \rightarrow K_S \pi^+ \pi^- \pi^0$ arXiv:2305.03975 (2023) $K^+ K^- \pi^+ \pi^-$ PRD 107 (2023) 3, 032009	. <u>D</u>		[00]	
$D^{0} \rightarrow D^{0} \rightarrow D^{0$	LHCb measurements with $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow$ $K^{+}K^{-}\pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{+}\pi^{-}$ arXiv:2301.10328 (2023)	$\gamma = 6$	3.8°+2	3.5° 3.7°	

A new method for the optimal precision on γ

		-	
Parameters	Source	Ref.	Status since
			Ref. [14]
$\delta DK^{*\pm}_{B^{\pm}}$	LHCb	[33]	As before
$c_{B^0}^{DK^{*0}}$	LHCb	[53]	As before
3	HFLAV	[13]	As before
ϕ_s	HFLAV	[13]	As before
$\cos \delta_D^{K\pi}, \sin \delta_D^{K\pi}, (r_D^{K\pi})^2, x^2, y$	CLEO-c	[27]	New
$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^{0}}, r_{D}^{K\pi} \cos \delta_{D}^{K\pi}, r_{D}^{K\pi} \sin \delta_{D}^{K\pi}$	BESIII	[28]	New
$F^{+}_{\pi\pi\pi^{0}}, F^{+}_{KK\pi^{0}}$	CLEO-c	[54]	As before
$\Gamma^+_{4\pi}$	CLEO-c+BESIII	[26, 54]	Updated
$\kappa_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[55 - 57]	As before

LHCb model-independent mixing with $D^0 \rightarrow K_S \pi^+ \pi^-$

Same BES III input also critical for charm mixing

 $D^0 \to K^0_S \pi^+ \pi^-$

BESIII: PRL 124 (2020) 24, 241802

first observation of non-zero $x = \frac{\Delta m}{\Gamma}$, i.e. of a mass difference between the two charm mass eigenstates.

 $\begin{aligned} x &= (3.98^{+0.56}_{-0.54}) \times 10^{-3}, \\ y &= (4.6^{+1.5}_{-1.4}) \times 10^{-3}, \\ |q/p| &= 0.996 \pm 0.052, \\ \phi &= 0.056^{+0.047}_{-0.051}. \end{aligned}$

LHCb: PRL 127 (2021) 11, 111801

Method: Phys.Rev. D99 (2019) no.1, 012007

$B^{\pm} \rightarrow DK^{\pm}$

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Direct Observations

"New Physics" in trees generally seen as less likely than in loops. (Lenz et al find however that there is room for NP in trees that could affect γ by several degrees.) In any case: would like to compare tees and loops.

<u>JHEP 06 (2014) 040, JHEP 07 (2020) 177</u>

Direct Observations

"New Physics" in trees generally seen as less likely than in loops. (Lenz et al find however that there is room for NP in trees that could affect γ by several degrees.) In any case: would like to compare tees and loops.

<u>JHEP 06 (2014) 040, JHEP 07 (2020) 177</u>

Direct Observations

"New Physics" in trees generally seen as less likely than in loops. (Lenz et al find however that there is room for NP in trees that could affect γ by several degrees.) In any case: would like to compare tees and loops.

<u>JHEP 06 (2014) 040, JHEP 07 (2020) 177</u>

Unitarity triangle geometric representation of Standard Model constraints

Unitarity triangle

Unitarity triangle

Unitarity triangle

Eva Gersabeck, Jake Lane, Jonas Rademacker

Measurment of γ with LHCb & BES III data with model-independent binned method.

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Measurements of c_i , s_i at BES III

Model-informed, optimised binning

Measurements of c_i , s_i at BES III

Model independent, binned y fit

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

- Binned decay rate: $\Gamma \left(B^{\pm} \rightarrow D(K_{s}\pi^{+}\pi^{-})K^{\pm}\right)_{i} = \qquad \qquad \mathcal{T}_{i} \text{ known from flavour-}$ $\mathcal{T}_{i} + r_{B}^{2}\mathcal{T}_{-i} + 2r_{B}\sqrt{\mathcal{T}_{i}\mathcal{T}_{-i}} \left\{c_{i}\cos\left(\delta \pm \gamma\right) + s_{i}\sin\left(\delta \pm \gamma\right)\right\} \text{ specifc D decays}$ (weighted) average of cos(δ_{D}) and sin(δ_{D}) over bin i, where δ_{D} = phase difference between D \rightarrow Ks $\pi\pi$ and Dbar \rightarrow Ks $\pi\pi$
- Binning such that such that $C_i = C_{-i}$, $S_i = -S_{-i}$
- Distribution sensitive to c_i , s_i , r_B , δ and γ .
- Ci, Si, measured at charm threshold.

Model-independent, binned approach

One complex number per bin-pair, $c_i + is_i$, contains the key information uniquely accessible at CLEO-c/BES III, which is related to the phases the D^0 and \overline{D}^0 decay amplitudes.

Model-independent method: Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).Eva Gersabeck, Jake Lane, Jonas RademackerA new method for the optimal precision on γ