11th International Workshop on Charm Physics (CHARM 2023)

Contribution ID: 36

Type: contributed parallel talk

Insights into the T_{cc}^+ tetraquark in a constituent quark model picture

Thursday 20 July 2023 15:40 (20 minutes)

The LHCb collaboration announced in 2021 the discovery of a new tetraquark-like state, named T_{cc}^+ . The T_{cc}^+ is reminiscent of the X(3872), which is a candidate for a loosely-bound DD^* +h.c. molecule; however, we are now dealing with an open-charmed state which radically changes its nature and makes it explicitly exotic. In this talk, the recently discovered T_{cc}^+ is evaluated as a DD^* molecular structure in the $J^P=1^+$ sector [1]. A coupled-channel calculation in the charged basis, considering the D^0D^{*+} , D^+D^{*0} and $D^{*0}D^{*+}$ channels, is carried out in the framework of a constituent quark model that has successfully described other molecular candidates in the charmonium spectrum such as the X(3872). The T_{cc}^+ is found to be a D^0D^{*+} molecule (87%) with a binding energy of 387 keV/c² and a width of 81 keV, in agreement with the experimental measurements. The quark content of the state forces the inclusion of exchange diagrams to handle indistinguishable quarks between the D mesons, which are found to be essential for binding the molecule. The $D^0D^0\pi^+$ line shape, scattering lengths and effective ranges of the molecule are also analysed and found to be in agreement with the LHCb analysis. We search for further partners of the T_{c}^{+} in other charm and bottom sectors, finding different candidates. In particular, in the charm sector we find a shallow $J^P = 1^+ D^+ D^{*0}$ molecule (83%), called T'_{cc} , just 1.8 MeV above the T^+_{cc} state. In the bottom sector, we find an isoscalar and an isovector $J^P=1^+$ bottom partners, which are BB^* molecules lying $21.9~{\rm MeV/c^2}~(I=0)$ and $10.5~{\rm MeV/c^2}$ (I=1), respectively, below the B^0B^{*+} threshold.

[1] P.G.Ortega, J.Segovia, D.R.Entem and F.Fernandez, "Nature of the doubly-charmed tetraquark Tcc+ in a constituent quark model", Phys. Lett. B 841 (2023), 137918 [arXiv:2211.06118 [hep-ph]].

Consent

I consent to recording/broadcasting my presentation.

Primary author: GARCÍA ORTEGA, Pablo (Universidad de Salamanca)

Co-authors: Dr SEGOVIA, Jorge (U. Pablo de Olavide); Prof. R. ENTEM, David (University of Salamanc); Prof.

FERNÁNDEZ, Francisco (University of Salamanca)

Presenter: GARCÍA ORTEGA, Pablo (Universidad de Salamanca)

Session Classification: Parallel A

Track Classification: exotics