Exclusive weak decays of strange charm mesons from light-cone sum rules

Shan Cheng

Hunan University

11th international workshop on charm physics

July 20, 2023, Siegen

arXiv:2307.02309, 2003.06797

Overview

DiPion

Light-cone distribution amplitudes Double expansion and the coefficient $B_{nl}^{(I)}(s)$

DiPion(DiKaon) LCDAs in
$$D_s^{(*)}$$
 weak decay $D_s \rightarrow (f_0 \rightarrow) [\pi^+\pi^-]_{\rm S} e^+\nu_e$ D_s^* weak decay

Conclusion

DiPion

Why DiPion?

- CKM matrix is a crucial criterion of the Standard Model[PDG 2022]
- long standing $|V_{ub}|$ tension
- † $|V_{ub}|=(3.82\pm0.20)\times10^{-3}$, mainly extracted from $B\to X_u l \nu$ and $B\to\pi l \nu$
- † $|V_{ub}|_{\rm in} = (4.13 \pm 0.25) \times 10^{-3}, |V_{ub}|_{\rm ex} = (3.70 \pm 0.16) \times 10^{-3}, \sim 2.5\sigma$
- † enlarge the set of exclusive processes to determine $|V_{ub}|$, a candidate is $B \to \rho l \nu$ $\triangle \rho$ is reconstructed by $\pi\pi$ invariant mass spectral, width effect/nonresonant contribution ? \triangle the underlying consideration is $B \to \pi\pi l \bar{\nu}_l$ (B_{l4})[Faller 2014]
- V_{cs} issue
- $\dagger~|V_{cs}|=0.975\pm0.006$, mainly extracted from the (semi)leptonic $D_{(s)}$ decays
- † $|V_{cs}|=0.972\pm0.007,\ |V_{cs}|=0.984\pm0.012,\ \sim1.5\sigma$ derivation William and Shu-Lei's talks
- $\dagger~\sim3\sigma$ tension two years ago, 0.939 ± 0.038 and 0.992 ± 0.012
- † new channels like semileptonic $D_s^{(*)}$ decays are highly anticipated \triangle problems encountered, $D_s \rightarrow f_0 l \nu$ has large uncertainty due to the width and complicate structure $\triangle D_s^* \rightarrow \phi l \nu$
- we need to study DiPion and DiKaon LCDAs

Chiral-even LC expansion with gauge factor [x, 0][Polyakov 1999, Diehl 1998]

$$\langle \pi^a(k_1)\pi^b(k_2)|\overline{q}_f(zn)\gamma_\mu \tau q_{f'}(0)|0\rangle = \kappa_{ab}\,k_\mu\int dx\,e^{iuz(k\cdot n)}\,\Phi_\parallel^{ab,ff'}(u,\zeta,k^2)$$

- \triangle $n^2 = 0$, \triangle index f, f' respects the (anti-)quark flavor, \triangle a, b indicates the electric charge
- \triangle coefficient $\kappa_{+-/00}=1$ and $\kappa_{+0}=\sqrt{2}$, \triangle $k=k_1+k_2$ is the invariant mass of dipion state
- $\Delta \tau = 1/2, \tau^3/2$ corresponds to the isoscalar and isovector $2\pi DAs$,
- \triangle higher twist $\propto 1, \gamma_{\mu}\gamma_{5}$ have not been discussed yet, γ_{5} vanishes due to *P*-parity conservation
- † Three independent kinematic variables
 - △ momentum fraction z carried by anti-quark with respecting to the total momentum of DiPion state,
 - \triangle longitudinal momentum fraction carried by one of the pions $\zeta = k_1^+/k^+$, $2q \cdot \bar{k} \ (\propto 2\zeta 1)$ $\triangle k^2$
- † Normalization conditions

$$\begin{split} \int_0^1 \Phi_{\parallel}^{I=1(0)}(u,\zeta,k^2) &= (2\zeta-1)F_{\pi}(k^2) \\ \int_0^1 \, dz \, (2z-1) \Phi_{\parallel}^{I=0}(z,\zeta,k^2) &= -2M_2^{(\pi)} \zeta (1-\zeta) F_{\pi}^{\text{EMT}}(k^2) \end{split}$$

- $\triangle F_{\pi}^{em}(0) = 1$, $\triangle F_{\pi}^{EMT}(0) = 1$,
- \triangle $M_2^{(\pi)}$ is the momentum fraction carried by quarks in the pion associated to the usual quark distribution

DiPion LCDAs

• $2\pi {\sf DAs}$ is decomposed in terms of $C_n^{3/2}(2z-1)$ and $C_\ell^{1/2}(2\zeta-1)$

$$\Phi^{l=1}(z,\zeta,k^2,\mu) = 6z(1-z)\sum_{n=0,\text{even } l=1,\text{odd}}^{\infty} \sum_{l=1,\text{odd}}^{n+1} B_{n\ell}^{l=1}(k^2,\mu)C_n^{3/2}(2z-1)C_\ell^{1/2}(2\zeta-1)$$

$$\Phi^{I=0}(z,\zeta,k^2,\mu) = 6z(1-z) \sum_{n=1,\text{odd } I=0,\text{even}}^{\infty} B_{n\ell}^{I=0}(k^2,\mu) C_n^{3/2}(2z-1) C_{\ell}^{1/2}(2\zeta-1)$$

• $B_{n\ell}(k^2,\mu)$ have similar scale dependence as the a_n of π,ρ,f_0 mesons

$$\begin{split} B_{n\ell}(k^2, \mu) &= B_{n\ell}(k^2, \mu_0) \left[\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)} \right] [\gamma_n^{(0)} - \gamma_0^{(0)}] / [2\beta_0] \\ \gamma_n^{\perp(\parallel), (0)} &= 8C_F \left(\sum_{k=1}^{n+1} \frac{1}{k} - \frac{3}{4} - \frac{1}{2(n+1)(n+2)} \right) \end{split}$$

- Watson theorem of π - π scattering amplitudes
 - \triangle implies an intuitive way to express the imaginary part of $2\pi DAs$
 - △ leads to the Omnés solution of N—subtracted dispersion relation for the coefficients

$$B_{n\ell}^I(k^2) = B_{n\ell}^I(0) \, \mathrm{Exp} \left[\sum_{m=1}^{N-1} \frac{k^{2m}}{m!} \, \frac{d^m}{dk^{2m}} \, \ln B_{n\ell}^I(0) + \frac{k^{2N}}{\pi} \, \int_{4m_\pi^2}^\infty ds \, \frac{\delta_\ell^I(s)}{s^N(s-k^2-i0)} \right]$$

 \triangle 2 π DAs in a wide range energies is given by δ_{ℓ}^{I} and a few subtraction constants

DiPion LCDAs

• Soft pion theorem relates the chirarlly even coefficients with a_n^{π}

$$\sum_{\ell=1}^{n+1} B_{n\ell}^{\parallel,l=1}(0) = a_n^{\pi}, \quad \sum_{\ell=0}^{n+1} B_{n\ell}^{\parallel,l=0}(0) = 0$$

- $2\pi DAs$ relate to the skewed parton distributions (SPDs) by crossing
 - \triangle express the moments of SPDs in terms of $B_{nl}(k^2)$ in the forward limit as

$$M_{N={\rm odd}}^{\pi} = \frac{3}{2} \frac{N+1}{2N+1} B_{N-1,N}^{I=1}(0), \quad M_{N={\rm even}}^{\pi} = 3 \frac{N+1}{2N+1} B_{N-1,N}^{I=0}(0)$$

- In the vicinity of the resonance, $2\pi DAs$ reduce to the DAs of ρ/f_0
 - \triangle relation between the a_n^{ρ} and the coefficients $B_{n\ell}$

$$a_n^\rho = B_{n1}(0) \, \mathrm{Exp} \left[\sum_{m=1}^{N-1} c_m^{n1} m_\rho^{2m} \right], \quad c_m^{(n1)} = \frac{1}{m!} \, \frac{d^m}{dk^{2m}} \left[\ln B_{n1}(0) - \ln B_{01}(0) \right]$$

 \triangle f_{ρ} relates to the imaginary part of $B_{nl}(m_{\rho}^2)$ by $\langle \pi(k_1)\pi(k_2)|\rho\rangle = g_{\rho\pi\pi}(k_1-k_2)^{\alpha}\epsilon_{\alpha}$

$$f_\rho^\parallel = \frac{\sqrt{2} \, \Gamma_\rho \, \mathrm{Im} B_{01}^\parallel(m_\rho^2)}{g_{\rho\pi\pi}}, \quad f_\rho^\perp = \frac{\sqrt{2} \, \Gamma_\rho \, m_\rho \, \mathrm{Im} B_{01}^\perp(m_\rho^2)}{g_{\rho\pi\pi} \, f_{2\pi}^\perp}$$

DiPion LCDAs

• The subtraction constants of $B_{n\ell}(s)$ [Polyakov 1999, SC 2019, 2023]

(nl)	$B_{n\ell}^{\parallel}(0)$	$c_1^{\parallel,(nl)}$	$\frac{d}{dk^2} \ln B_{n\ell}^{\parallel}(0)$	$B_{n\ell}^{\perp}(0)$	$c_1^{\perp,(nl)}$	$\frac{d}{dk^2} \ln B_{n\ell}^{\perp}(0)$
(01) (21) (23)	$ \begin{vmatrix} 1 \\ -0.113 & \rightarrow 0.218 \\ 0.147 & \rightarrow -0.038 \end{vmatrix} $	0 -0.340 0	$1.46 \rightarrow 1.80$ 0.481 0.368	$ \begin{vmatrix} & 1 \\ 0.113 & \rightarrow 0.185 \\ 0.113 & \rightarrow 0.185 \end{vmatrix} $	0 -0.538 0	$0.68 \rightarrow 0.60$ -0.153 0.153
(10) (12)	$ \begin{array}{c} -0.556 & \rightarrow -0.300 \\ 0.556 & \rightarrow 0.300 \end{array} $		$0.413 \rightarrow 0.375$ $0.413 \rightarrow 0.375$	-	- -	

△ firstly studied in the effective low-energy theory based on instanton vacuum

- · Above discussions are all at leading twist level
- Subleading twist LCDAs are still in lack

DiPion LCDAs in D_s weak decay DiKaon LCDAs in D_s^* weak decay

$$D_s \rightarrow (f_0 \rightarrow) [\pi \pi]_{\rm S} e^+ \nu_e$$

• Semileptonic $D_{(s)}$ decays provide a clean environment to study scalar mesons

$$\triangle\ D_{(s)} \rightarrow a_0 e^+ \nu \text{[BESIII 18, 21]}, \ D^+ \rightarrow f_0/\sigma e^+ \nu \text{[BESIII 19]}, \ D_s \rightarrow f_0(\rightarrow \pi^+\pi^-) e^+ \nu \text{[CLEO 09]}$$

$$\triangle\ B\ of\ D_s \rightarrow f_0(\rightarrow \pi^0\pi^0, K_sK_s) e^+ \nu \text{[BESIII 22]}, \ D_s \rightarrow f_0(\rightarrow \pi^+\pi^-) e^+ \nu \ form\ factor[BESIII 23]$$

$$\mathcal{B}(D_s \to f_0(\to \pi^0 \pi^0) e^+ \nu) = (7.9 \pm 1.4 \pm 0.3) \times 10^{-4}$$

 $\mathcal{B}(D_s \to f_0(\to \pi^+ \pi^-) e^+ \nu) = (17.2 \pm 1.3 \pm 1.0) \times 10^{-4}$

 \triangle isospin symmetry expectation $\mathcal{B}(f_0 \to \pi^+\pi^-)/\mathcal{B}(f_0 \to \pi^0\pi^0) = 2$, possible ρ^0 pollution $\triangle f_+^{f_0}(0)|V_{CS}| = 0.504 \pm 0.017 \pm 0.035$

- Theoretical consideration $\frac{d\Gamma(D_s^+ \to f_0 I^+ \nu)}{dq^2} = \frac{G_F^2 |V_{cs}|^2 \lambda^{3/2} (m_{D_s}^2, m_{f_0}^2, q^2)}{192 \pi^3 m_{D_s}^3} |f_+(q^2)|^2$
- Observed in the $\pi\pi$ invariant mass spectral, improvement with the width effect

$$\begin{split} \frac{d\Gamma(D_s^+ \to [\pi\pi]_{\mathrm{S}} \, l^+\nu)}{ds dq^2} &= \frac{1}{\pi} \frac{G_F^2 |V_{c\mathrm{S}}|^2}{192 \pi^3 m_{D_\mathrm{S}}^3} |f_+(q^2)|^2 \frac{\lambda^{3/2} (m_{D_\mathrm{S}}^2, s, q^2) \, g_1^2 \beta_\pi(s)}{|m_{\mathrm{S}}^2 - s + i \, (g_1^2 \beta_\pi(s)) + g_2^2 \beta_K(s)) \, |^2} \\ &\frac{d^2 \Gamma(D_s^+ \to [\pi\pi]_{\mathrm{S}} \, l^+\nu)}{dk^2 dq^2} &= \frac{G_F^2 |V_{c\mathrm{S}}|^2}{192 \pi^3 m_{D_\mathrm{S}}^3} \frac{\beta_{\pi\pi} \, (k^2) \sqrt{\lambda_{D_\mathrm{S}}} \, q^2}{16 \pi} \sum_{\ell=0}^{\infty} 2 |F_0^{(\ell)}(q^2, k^2)|^2 \end{split}$$

• $D_s \to f_0$ ffs to $D_s \to [\pi\pi]_S$ ffs [Hambrock 2015, SC 2017,19,20, Descotes-Genon 2019,23] in $B_{(s)}$ cases

$$D_s \rightarrow (f_0 \rightarrow) [\pi \pi]_S e^+ \nu_e$$

• Definitions of $D_s o f_0$ form factors

a pure $\bar{s}s$ state, the mixing angle is chosen at $20^\circ \pm 10^\circ$

$$\langle f_0(p_1)|\bar{s}\gamma_\mu\gamma_5c|D_s^+(p)\rangle = -i\left[f_+(q^2)\left(p+p_1\right)_\mu + f_-(q^2)q_\mu\right]$$

• Form factor and the differential decay width [SC 2023] $\triangle M^2 = 5.0 \pm 0.5 \text{ GeV}^2 \text{ and } s_0 = 6.0 \pm 0.5 \text{ GeV}^2 \text{ , } \triangle \tilde{f}_{f_0} = 335 \text{ MeV, much larger than } 180 \text{ MeV}$ used in the previous LCSRs, $\triangle a_1^{s/\sigma}$ term contributions are considered for the first time , $\triangle f_0$ is not

LCSRs-S1	3pSRs(07)	LFQM(09)	CLFD/DR(08)	LCSRs(10)
0.63 ± 0.04	0.96	0.87	0.86/0.90	0.30 ± 0.03

$$D_s \rightarrow [\pi\pi]_{\rm S} e^+ \nu_e$$

• Definitions of $D_s o [\pi\pi]_{\mathrm{S}}$ form factors

$$\langle [\pi(k_1)\pi(k_2)]_{\rm S} \, |\bar{s}\gamma_{\mu}(1-\gamma_5)c|D_s^+(p)\rangle = -iF_t(q^2,s,\zeta)k_{\mu}^t - iF_0(q^2,s,\zeta)k_{\mu}^0 - iF_{\parallel}(q^2,s,\zeta)k_{\mu}^{\parallel}$$

Form factor and the differential decay width at leading twist [SC 2023]

- subleading twist LCDAs give dominate contribution in $D_s o [\pi\pi]_{
 m S}$ transition
- shows relatively moderate evolution with larger allowed momentum transfer
- ullet further measurements would help us to understand the dipion system, ho, f_0
- different in $B_{(s)}$ case where the leading twist contribution is dominate

DiPion LCDAs in D_s weak decay DiKaon LCDAs in D_s^* weak decay

- $\alpha_s : \alpha : G_F \sim \mathcal{O}(1) : \mathcal{O}(1/137) : \mathcal{O}(10^{-5})$
- · very hard to measure weak decay from strong and EM interactions
- the total widths of heavy-light vector mesons are still in lack[PDG 2022] $\triangle \Gamma_{D^*+} = 84.3 \pm 1.8 \, \mathrm{keV} \, (\rightarrow D^0 \pi^+, D^+ \pi^0, D^+ \gamma) \\ \triangle \Gamma_{D^*0} < 2.1 \, \mathrm{MeV} \, (\rightarrow D^0 \pi^0, D^0 \gamma), \quad \Gamma_{D^*_s+} < 1.9 \, \mathrm{MeV} \, (\rightarrow D^*_s \gamma, D^+_s \pi^0, D^+_s e^+ e^-) \\ \triangle \Gamma_{B^*}, \Gamma_{B^*_s} \text{ no measurement}$
- but important to properties and $g_{D_s^*D_s\gamma} \to \text{non-perturbative approaches}$

	$g_{D^{*+}D^{+}\gamma}$ (GeV ⁻¹)	$g_{D^{*0}D^{0}\gamma}$ (GeV ⁻¹)	$g_{D_s^{*+}D_s^+\gamma}$ (GeV ⁻¹)
this work	$-0.15^{+0.11}_{-0.10}$	$1.48^{+0.29}_{-0.27}$	$-0.079^{+0.086}_{-0.078}$
HHχPT [24]	-0.27 ± 0.05	2.19 ± 0.11	0.041 ± 0.056
HQET+VMD [35]	$-0.29^{+0.19}_{-0.11}$	$1.60^{+0.35}_{-0.45}$	$-0.19^{+0.19}_{-0.08}$
HQET+CQM [71]	$-0.38^{+0.05}_{-0.06}$	1.91 ± 0.09	-
Lattice QCD [32]	-0.2 ± 0.3	2.0 ± 0.6	-
LCSR [21]	-0.50 ± 0.12	1.52 ± 0.25	-
QCDSR [20]	$-0.19^{+0.03}_{-0.02}$	0.62 ± 0.03	-0.20 ± 0.03
RQM [72]	-0.44 ± 0.06	2.15 ± 0.11	-0.19 ± 0.03
experiment [16–18]	-0.47 ± 0.06	1.77 ± 0.03	-

LCSRs, hadronic photon NLO[Li 2020]

LCSRs, LP NLO corrections[Pullin 2021]
$$g_{D_s^*D_s\gamma} = 0.60^{+0.19}_{-0.18}$$

very sensitive to different contributions (radiative corrections, power corrections) a benchmark to probe the involved dynamics

• impressive lattice QCD evaluation[HPQCD 2013] $\Gamma_{D_s^{*+}}^{\mathrm{HPQCD}} = 0.070(28) \,\mathrm{keV}$ \triangle the longest-lived charged vector meson \triangle encourage us to study the exclusive D_s^* weak decay

- D_s^* weak decay are highly anticipated to determine $|V_{cs}|$
- leptonic decays, helicity enhanced $D_s^* \to l\nu$, $|V_{cs}|f_{D_s^*}$

$$\Gamma_{D_s^* \to l\nu} = \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^*}^2 m_{D_s^*}^3 \left(1 - \frac{m_l^2}{m_{D_s^2^*}^2}\right) \left(1 + \frac{m_l^2}{m_{D_s^2^*}^2}\right) = 2.44 \times 10^{-12} \, \text{GeV}$$

$$\triangle \; \mathcal{B}(D_s^* \to \mu \nu) = \frac{\Gamma_{D_s^* \to \mu \nu}}{\Gamma_{D_s^*}} \sim \frac{\Gamma_{D_s \to \mu \nu}}{\Gamma_{D_s^*}} \frac{2m_{D_s^*}^2}{3m_{\mu}^2} \sim 2 \times 10^{-5}, \; \text{close to the LQCD[HPQCD 2013]}$$

- \triangle the most favored modes, $\left(2.1^{+1.3}_{-0.9}\right)\times10^{-5} [2304.12159~\text{BESIII}]$
- \triangle confirms the total width of D_s^* but need more precise lattice evaluation
- semileptonic decays, $D_{\rm s}^* o \phi l
 u$, $|V_{\rm cs}|$ and helicity form factors

 \triangle heavy quark symmetry (HQS) has been examined in $\bar{B} \to D^*(D)l\bar{\nu}$, also in $D_s^*(D_s) \to \phi l^+ \nu$?

- △ lepton flavour university (LFU) in vector charm sector
- hadronic decays $D_s^* \to \phi \rho, \phi \pi$, factorisation theo. or topological analysis
- inclusive decays, $D_s^* o X_s l \nu$, HQET and reliability of power expansion Keri's talk

- LCSRs parameters $s_0 = 6.8 \pm 1.0 \text{ GeV}^2$, $M^2 = 4.50 \pm 1.0 \text{ GeV}^2$
- Wigner-Eckart theorem: the helicity information at endpoint is only governed by the Clebsch-Gordan coefficients [Hiller 2014, Grattrex 2016, Hiller 2021]

• semileptonic decays $D_s^* \to \phi I \nu_I$

$$\begin{split} &\frac{d\Gamma_{ij}(q^2)}{dq^2} = \frac{G_F^2 |V_{cs}|^2}{192\pi^3 m_{D_s^*}^3} \lambda^{1/2} (m_{D_s^*}^2, m_{\phi}^2, q^2) \, q^2 \, |H_{ij}(q^2)|^2 \\ &\Gamma_{D_s^* \to \phi l \nu_l} = \frac{1}{3} \int_0^{q_0^2} dq^2 \sum_{i = 0, +} \frac{d\Gamma_{ij}(q^2)}{dq^2} = \left(3.28^{+0.82}_{-0.71}\right) \times 10^{-14} \, \mathrm{GeV} \end{split}$$

 \triangle DiKaon LCDAs and the width effect in $D_s^* o \phi$ transition

• hadronic decays (naive factorisation)

$$\mathcal{A}(D_s^{*+} \to \phi \pi^+) = (-i) \frac{G_F}{\sqrt{2}} V_{cs} \, a_1 \, m_\pi f_\pi \sum_{i=0,\pm} H_{0j}(m_\pi^2)$$

$$\mathcal{A}(D_s^{*+} \to \phi \rho^+) = \frac{G_F}{\sqrt{2}} V_{cs} \, a_1 \, m_\rho f_\rho^{\parallel(\bot)} \sum_{i,j} H_{ij}(m_\rho^2)$$

$$\triangle \, a_1(\mu) = 0.999, \, f_\pi = 0.130 \, \text{GeV}, \, f_\rho^{\parallel} = 0.210 \, \text{GeV}$$

$$\triangle \, \Gamma_{D_s^{*+} \to \phi \pi^+} = \left(3.81^{+1.52}_{-1.33}\right) \times 10^{-14} \, \text{GeV}, \quad \Gamma_{D_s^{*+} \to \phi \rho^+} = \left(1.16^{+0.42}_{-0.39}\right) \times 10^{-13} \, \text{GeV}$$

$$\triangle \, \text{the result of } \phi \pi \, \text{channel is marginally consistent with the PQCD[Yang 2022]}$$

• with the lattice evaluation of $\Gamma_{D_s^*} = (0.70 \pm 0.28) \times 10^{-8} \text{ GeV}_{\text{[HPQCD 2013]}}$ [SC 2022] $\mathcal{B}(D_s^* \to l\nu) = (3.49 \pm 1.40) \times 10^{-5}$, $\mathcal{B}(D_s^* \to \phi l\nu) = (0.47^{+0.12}_{-0.10} \pm 0.19) \times 10^{-6}$ $\mathcal{B}(D_s^{*+} \to \phi \pi^+) = (0.54^{+0.22}_{-0.19} \pm 0.22) \times 10^{-6}$, $\mathcal{B}(D_s^{*+} \to \phi \rho^+) = (1.65^{+0.61}_{-0.61} \pm 0.66) \times 10^{-6}$

D_s^st weak decay without the background analysis

- Belle II clear background
 - \triangle 2022, 400 fb⁻¹, reconstruct 2 × 10⁵ data samples of $D_s^*(D_s)$ from $\phi\pi$ channel \triangle phase 3 running (2024-2026), $10 \, \mathrm{ab^{-1}}$, $\mathcal{O}(1 \times 10^7)$ data sample of $D_s^*(D_s)$ \triangle the number of D_s^* production is $\mathcal{O}(10^9)$ $\Leftrightarrow \mathcal{B}(D_s \to \phi\pi) = (4.5 \pm 0.4) \%$ \triangle excellent potential to study the D_s^* weak decays, 50 ab⁻¹ is hottest expected
- LHCb excellent particle identification to distinguish K,π and μ \triangle the channel $D_s^* \to \phi(KK)\pi$ with the D_s^* producing by $B_s \to D_s^* \mu \nu$
- BESIII low background
 - riangle directly produced from e^+e^- collision at the $D_sD_s^*$ threshold
 - \triangle have collected $\sim 6 \times 10^6~D_s^*$ mesons with the $3.2\,{\rm fb}^{-1}$ data at 4.178 GeV
 - \triangle provides the good chance for the leptonic decay $D_s^* o l \nu$, Statistical error
 - \triangle first \mathcal{B} measurement [2304.12159], determination of spin and parity [2305.14631]
- STCF

Table 2.1: The expected numbers of events per year at different STCF energy points.

CME (GeV)	Lumi (ab ⁻¹)	Samples	σ(nb)	No. of Events	Remarks
4.180	1	$D_s^{+*}D_s^-$ +c.c. $D_s^{+*}D_s^-$ +c.c. $\tau^+\tau^-$	0.90 3.6	9.0×10^{8} 1.3×10^{8} 3.6×10^{9}	$\begin{array}{l} \text{BESIII } \mathcal{O}(10^6) D_s^+ / D_s^{*+} \text{ production} \\ \text{Single tag} \\ \text{Belle II } \mathcal{O}(10^9) D_s^+ / D_s^{*+} \text{ production} \end{array}$

Conclusion

- DiPion (DiKaon) structure in LCDAs
 - \triangle width effect of ρ, ϕ, f_0 in CKM determinations $\triangle F_{\rho}$ and et.al.
- $D_s^{(*)}$ weak decay

 \triangle semileptonic D_s decay provides clean environment to study scale meson and DiPion LCDAs $\triangle D_s^*$ provides the opportunity of first measurement of weak decay of vector meson and further more physics

Thank you for your patience.