

Bayesian determination of the CKM angle γ and the mixing and CP violating parameters entering charm physics Roberto Di Palma¹, Luca Silvestrini²

1: Infn, sezione di Roma Tre, Via della Vasca Navale, 84, 00146, Roma, Italy 2: Infn, sezione di Roma, Piazzale Aldo Moro 2, 00185, Roma, Italy

11th international workshop on charm physics (CHARM 23), Siegen, 17/07/2023

Istituto Nazionale di Fisica Nucleare

• **FCNC** are absent at the tree-level in the SM and suppressed by the hierarchical structure of the CKM matrix elements and the GIM mechanism.

• Heavy New Physics coupled to the up-type quarks may enter charm mixing, contributing to the **CP-violating parameters** describing processes involving *D* mesons.

• The precision reached by modern experiments has made **charm physics** a true **benchmark of the SM**.

How big is this D^0 window today?

Charm 23

Charm mixing

Short distance

Can be calculated using a local $\Delta C = 2$ Effective Hamiltonian

Long distance

Inherently non perturbative (very hard to compute)

Charm mixing

Short distance

Can be calculated using a local $\Delta C = 2$ Effective Hamiltonian

From GIM + CKM: Long distance dominate the meson-anti meson transition amplitude.

Long distance

Inherently non perturbative (very hard to compute)

Charm mixing

Short distance

Can be calculated using a local $\Delta C = 2$ Effective Hamiltonian

From GIM + CKM: Long distance dominate the meson-anti meson transition amplitude.

From the Wolfenstein parametrization of : the CKIVI

Charm 23

NO Physical phases up to $\mathcal{O}(\lambda^4)$

Long distance

Inherently non perturbative (very hard to compute)

Large amounts of CP violation could signal the presence of NP

2

Hamiltonian formalism for neutral meson mixing

Hamiltonian eigenstates

Dispersive Part $H = M - i \Gamma / 2$ **Absorptive Part**

 $|M_{L,S}\rangle = p |M^0\rangle \pm q |\overline{M^0}\rangle$

Hamiltonian formalism for neutral meson mixing

Hamiltonian eigenstates

CP violating parameters A. Kagan, L. Silvestrini <u>2001.07207</u> **Pure mixing** Interference between mixing and decay

$$\phi_{12} = \arg \left[\frac{M_{12}}{\Gamma_{12}} \right]$$

Charm 23

- **Dispersive Part** $H = M i\Gamma/2$ **Absorptive Part**
 - $|M_{L.S}\rangle = p |M^0\rangle \pm q |\overline{M^0}\rangle$

$$\phi_{f}^{M,\Gamma} \text{ weak phases}$$

$$\lambda_{f}^{x_{12}} = \frac{\int_{x_{12}}^{x_{12}} \mathcal{A}_{f}}{|x_{12}| \mathcal{A}_{f}|}$$

$$x=M,\Gamma$$

Hamiltonian formalism for neutral meson mixing

Hamiltonian eigenstates

CP violating parameters A. Kagan, L. Silvestrini <u>2001.07207</u> **Pure mixing**

$$\phi_{12} = \arg\left[\frac{M_{12}}{\Gamma_{12}}\right]$$

Mixing parameters

$$x_{12} = \frac{2|M_{12}|}{\Gamma}$$

Charm 23

- **Dispersive Part** $H = M i\Gamma/2$ **Absorptive Part**
 - $|M_{LS}\rangle = p |M^0\rangle \pm q |M^0\rangle$

 - Interference between mixing and decay

$$\phi_{f}^{M,\Gamma} \text{ weak phases}$$

$$\delta_{f}^{x_{12}} = \frac{x_{12}}{|x_{12}|} \frac{\mathscr{A}_{f}}{\overline{\mathscr{A}}_{f}} \Big|_{x=M,\Gamma}$$

$$y_{12} = \frac{|\Gamma_{12}|}{\Gamma}$$

Hamiltonian formalism for neutral meson mixing

Hamiltonian eigenstates $|M_{L,S}\rangle = p |M^0\rangle \pm q |M^0\rangle$

CP violating parameters A. Kagan, L. Silvestrini <u>2001.07207</u> **Pure mixing Interference between mixing and decay**

Mixing parameters

- **Dispersive Part** $H = M i\Gamma/2$ **Absorptive Part**

How to extract ϕ_f^M and ϕ_f^{Γ} : WS/RS ratios

Consider the CF/DCS decays of the D meson (e.g. $f = K^- \pi^+$)

Charm 23

Roberto Di Palma

How to extract ϕ_f^M and ϕ_f^{Γ} : WS/RS ratios

Consider the CF/DCS decays of the D meson (e.g. $f = K^- \pi^+$)

Approximation!!

Second order in WS/R $x_{12}, y_{12}, \text{since}$ $\mathcal{O}(x_{12}) = \mathcal{O}(y_{12}) \approx 10^{-3}$

Charm 23

Roberto Di Palma

The so-called WS/RS time-dependent ratios are measured (e.g. 1611.06143)

$$= R_{f}^{\pm} + (\Gamma t) \sqrt{R_{f}^{\pm}} c_{f}^{\pm} + (\Gamma t)^{2} c_{f}^{'\pm}$$

Observables!!

$$R_{f}^{\pm} = r_{D[f]}^{2}(1 \pm A_{L})$$

 $c_{f}^{(')\pm}(x_{12}, y_{12}, \phi_{f}^{M}, \phi_{f}^{M})$

How to extract ϕ_f^M and ϕ_f^{Γ} : three-body final states

in bins (i, j) and counting the relative events

A study of ratios of decay rates can be performed also for three-body final states (e.g. $f = K_S^0 \pi^+ \pi^-$) by partitioning the phase space and the decay time

Binning example from 2106.03744

How to extract ϕ_f^M and ϕ_f^{Γ} : three-body final states

in bins (i, j) and counting the relative events

Charm 23

A study of ratios of decay rates can be performed also for three-body final states (e.g. $f = K_S^0 \pi^+ \pi^-$) by partitioning the phase space and the decay time

Roberto Di Palma

How to extract ϕ_f^M and ϕ_f^{Γ} : exponential approximation

Other observables rely on a first-order approximation of the decay rate **Exponential approximation:** $\Gamma(\stackrel{(-)}{D} \to f) \propto \exp \left[-\Gamma t \left(\hat{\Gamma}_{\stackrel{(-)}{D} \to f}\right)\right]$

Charm 23

How to extract ϕ_f^M and ϕ_f^{Γ} : exponential approximation

Other observables rely on a first-order approximation of the decay rate **Exponential approximation:** $\Gamma(\stackrel{(-)}{D} \to f) \propto \exp \left[-\Gamma t \left(\hat{\Gamma}_{\stackrel{(-)}{D} \to f}\right)\right]$

Charm 23

$$R^{f}(t) = \frac{\Gamma(D^{0} \to f_{CP}) + \Gamma(\overline{D^{0}} \to f_{CP})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D^{0}} \to \overline{f})} \propto e^{-t\Gamma(y_{CP}^{f_{CP}})}$$

Observables!! $\tilde{y}_{CP}(x_{12}, y_{12}, \phi_f^{M,\Gamma}) = y_{CP}^{f} - y_{CP}^{f}$

How to extract ϕ_f^M and ϕ_f^{Γ} : exponential approximation

Other observables rely on a first-order approximation of the decay rate **Exponential approximation:** $\Gamma(\stackrel{(-)}{D} \to f) \propto \exp \left| -\Gamma t \left(\hat{\Gamma}_{\stackrel{(-)}{D} \to f} \right) \right|$

Measuring the CP Asymmetries $A_{f_{CP}}(t) = \frac{\Gamma(D^0 \to f_{CP}) - \Gamma(\overline{D^0} \to f_{CP})}{\Gamma(D^0 \to f_{CP}) + \Gamma(\overline{D^0} \to f_{CP})}$

Observables!! $\Delta Y_{f_{CP}} = \eta_{f_{CP}}(-x_{12}\sin(\phi_f^M$

Charm 23

$$R^{f}(t) = \frac{\Gamma(D^{0} \to f_{CP}) + \Gamma(\overline{D^{0}} \to f_{CP})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D^{0}} \to \overline{f})} \propto e^{-t\Gamma(y_{CP}^{f_{CP}})}$$

ables!!
$$\tilde{y}_{CP}(x_{12}, y_{12}, \phi_f^{M,\Gamma}) = y_{CP}^{f_{CP}} - y_{CP}^{f}$$

Roberto Di Palma

Subset of charm observables

Obs.	D ⁰ decays	Ref.	Obs.	D ⁰
$x_{\mathcal{CP}} y_{\mathcal{CP}} \Delta x \Delta y$	$D^0 ightarrow K^0_S \pi^+ \pi^-$	[73]	x y	$D^0 \rightarrow$
$x_{\mathcal{CP}} y_{\mathcal{CP}} \Delta x \Delta y$	$D^0 \to K^0_S \pi^+ \pi^-$	[48]	$\frac{x^2 + y^2}{4}$	D^0
$R^{\pm}_{K\pi} \; (x'^{\pm}_{K\pi})^2 \; y'^{\pm}_{K\pi}$	$D^0 ightarrow K^{\mp} \pi^{\pm}$	[86]	$F_{D[4\pi]}$	D
$ \begin{array}{l} \frac{\mathcal{B}(D^0 \rightarrow K^0_s K^+ \pi^-)}{\mathcal{B}(D^0 \rightarrow K^0_s K^- \pi^+)} \\ \Delta_{[K^0_S K \pi]} \\ \kappa_{D[K^0_S K \pi]} \end{array} $	$D^0 ightarrow K_S^0 K^\mp \pi^\pm$	[93]	$egin{array}{l} r_{D[K3\pi]} \ \Delta_{[K3\pi]} \ \kappa_{D[K3\pi]} \ \kappa_{D[K3\pi]} \ r_{D[K\pi\pi^0]} \ \Delta_{[K\pi\pi^0]} \ \kappa_{D[K\pi\pi^0]} \end{array}$	$D^0 \rightarrow D^0 \rightarrow D^0$
$\frac{\mathcal{B}(D^0 \rightarrow K^0_s K^+ \pi^-)}{\mathcal{B}(D^0 \rightarrow K^0_s K^- \pi^+)}$	$D^0 ightarrow K^0_S K^{\mp} \pi^{\pm}$	[94]	ΔY	D^0 –
ΔA_{CP}	$D^0 \rightarrow X^+ X^-$	[46]	$ ilde{y}_{\mathcal{CP}}$	D^0 -
$\Delta \langle \tau \rangle$				D^0 -
$R^{\pm}_{K\pi} \; (x'^{\pm}_{K\pi})^2 \; y'^{\pm}_{K\pi}$	$D^0 \to K^{\mp} \pi^{\pm}$	[87]	$F_{D[X^+X^-\pi^0]}$	$D^0 \rightarrow$

Charm 23

Roberto Di Palma

A pair of weak phases $\phi_f^{M,\Gamma}$ for each of the final states APPROXIMATE UNIVERSALITY

Subset of charm observables

Obs.	D ⁰ decays	Ref.	Obs.	D ⁰
$x_{\mathcal{CP}} y_{\mathcal{CP}} \Delta x \Delta y$	$D^0 ightarrow K^0_S \pi^+ \pi^-$	[73]	x y	$D^0 \rightarrow$
$x_{\mathcal{CP}} y_{\mathcal{CP}} \Delta x \Delta y$	$D^0 \to K^0_S \pi^+ \pi^-$	[48]	$\frac{x^2 + y^2}{4}$	D^0
$R^{\pm}_{K\pi} \; (x'^{\pm}_{K\pi})^2 \; y'^{\pm}_{K\pi}$	$D^0 ightarrow K^{\mp} \pi^{\pm}$	[86]	$F_{D[4\pi]}$	D
$ \begin{split} & \frac{\mathcal{B}(D^{0} \rightarrow K_{s}^{0} K^{+} \pi^{-})}{\mathcal{B}(D^{0} \rightarrow K_{s}^{0} K^{-} \pi^{+})} \\ & \Delta_{[K_{S}^{0} K \pi]} \\ & \mathcal{K}_{D[K_{S}^{0} K \pi]} \end{split} $	$D^0 ightarrow K_S^0 K^\mp \pi^\pm$	[93]	$r_{D[K3\pi]}$ $\Delta_{[K3\pi]}$ $\kappa_{D[K3\pi]}$ $r_{D[K\pi\pi^{0}]}$ $\Delta_{[K\pi\pi^{0}]}$ $\kappa_{D[K\pi\pi^{0}]}$	D^0 D^0 —
$\frac{\mathcal{B}(D^0 \rightarrow K^0_s K^+ \pi^-)}{\mathcal{B}(D^0 \rightarrow K^0_s K^- \pi^+)}$	$D^0 \to K^0_S K^{\mp} \pi^{\pm}$	[94]	ΔY	D^0 -
ΔA_{CP}	$D^0 \rightarrow X^+ X^-$	[46]	$ ilde{y}_{\mathcal{CP}}$	D^0 -
$\Delta \langle \tau \rangle$				D^0 -
$R^{\pm}_{K\pi} \; (x'^{\pm}_{K\pi})^2 \; y'^{\pm}_{K\pi}$	$D^0 \to K^{\mp} \pi^{\pm}$	[87]	$F_{D[X^+X^-\pi^0]}$	$D^0 \rightarrow$

Charm 23

A pair of weak phases $\phi_f^{M,\Gamma}$ for each of the final states **APPROXIMATE** UNIVERSALITY

Decay parameters

They appear when parametrizing the decay amplitudes: $r_{D[f]}$: Ratios of the magnitudes $\Delta_{[f]}$: Strong phases $\kappa_{D[f]}$: Coherence factors $F_{D[f]}$: CP-even fractions **BEAUTY OBSERVABLES**

Approximate Universality

The dispersive and absorptive parts of the antimeson-meson transition amplitude can be decomposed as

Charm 23

Roberto Di Palma

Approximate Universality

The dispersive and absorptive parts of the antimeson-meson transition

Approximate Universality

The dispersive and absorptive parts of the antimeson-meson transition amplitude can be decomposed as

Universal weak phases

We can define two CP violating weak phases with respect the dominant U-spin ($\Delta U = 2$) term

Good approximation for

$$\phi_f^{M,\Gamma} \simeq \phi_2^{M,\Gamma}$$

Charm 23

$$\phi_2^X = \arg \left[\frac{X_{12}}{X_2(\lambda_{uc}^s - \lambda_{uc}^d)^2/4} \right] \Big|_{X=M,\Gamma}$$

Roberto Di Palma

 $V_{ui}^* \quad W^+ \quad V_{cj}$ d, s, b $W^ \overline{D^0}$ V_{ci} $\Gamma_{12}^{SM} = \begin{bmatrix} \frac{\mathbf{Dominant}}{(\lambda_{uc}^{s} - \lambda_{uc}^{d})^{2}} \\ \frac{(\lambda_{uc}^{s} - \lambda_{uc}^{d})^{2}}{4} \\ \Gamma_{2} \end{bmatrix} + \frac{(\lambda_{uc}^{s} - \lambda_{uc}^{d})\lambda_{uc}^{b}}{2} \\ \Gamma_{1} + \frac{\lambda_{uc}^{b2}}{4} \\ \Gamma_{0}, \ \Gamma_{n} = \mathcal{O}(\epsilon^{n}) \end{bmatrix} \begin{bmatrix} \epsilon \approx 0.3 \\ \mathbf{U}\text{-spin breaking} \\ \mathbf{parameter} \end{bmatrix}$

SM estimates $\phi_2^{M,\Gamma} \approx 0.13^{\circ}$

B meson cascade decays

We provided additional information about the decay parameters of the D mesons by considering also processes involving the beauty quark, as already shown by LHCb (LHCb-CONF-2022-002)

Charm 23

B CASCADE DECAYS

B meson cascade decays

We provided additional information about the decay parameters of the D mesons by considering also processes involving the beauty quark, as already shown by LHCb (LHCb-CONF-2022-002)

B CASCADE DECAYS

$D \rightarrow f$ decays

Parametrizing the amplitudes in terms of Ratio of the magnitudes: $r_{D[f]}$ Strong phase: Δ_f Mixing parameters: x_{12} , y_{12}

B meson cascade decays

We provided additional information about the decay parameters of the D mesons by considering also processes involving the beauty quark, as already shown by LHCb (LHCb-CONF-2022-002)

$B \rightarrow D$ decays: sensitivity to γ

Parametrizing the amplitudes in terms of Ratio of the magnitudes: *r_{B[Dh]}* Strong phase: $\delta_{B[Dh]}$ Weak phase: $\arg[V_{ub}V_{uq}V_{cb}^*V_{cq}^*] \approx -\gamma$

Charm 23

Roberto Di Palma

B CASCADE DECAYS

$D \rightarrow f$ decays

Parametrizing the amplitudes in terms of Ratio of the magnitudes: $r_{D[f]}$ Strong phase: Δ_f Mixing parameters: x_{12}, y_{12}

Charm 23

(quasi-) ADS D^0h $\rightarrow \overline{D^0}h$

(quasi-) ADS **SENSITIVITY ΤΟ** γ SENSITIVITY TO CHARM **DECAY PARAMETERS** $[f_{CP}]_D h \qquad f = K^- \pi^+ (\pi^0), \ K^- \pi^+ \pi^- \ B$ D^0h

 $\Gamma(B \rightarrow [f]_D h) \propto 1 + r_{B[Dh]}^2 r_{D[f]}^2 + \text{Mixing part}$ $+2\kappa_{D[f]}\kappa_{B[Dh]}r_{B[Dh]}r_{D[f]}\cos(\Delta_{f}+\delta_{B[Dh]}-\gamma)$

Charm 23

SENSITIVITY ΤΟ γ SENSITIVITY TO CHARM **DECAY PARAMETERS**

Observables!! Ratios of decay rates (e.g. CP Asymmetries)

 $\overline{D^0h}$

(quasi-) ADS

GGSZ Observables

It is possible to study also B cascade decays, with a three-body final state of the Dmeson (e.g. $f = K_{s}^{0}\pi^{+}\pi^{-}$).

Measuring the decay rate at a phase space point

$$d\Gamma\left(\stackrel{(-)}{B} \to [f]_D \stackrel{(-)}{h} \right) / dp$$

Roberto Di Palma

GGSZ Observables

meson (e.g. $f = K_{s}^{0}\pi^{+}\pi^{-}$).

3.0LHCb $\begin{bmatrix} GeV^2/c^4 \\ 0.5 \end{bmatrix}$ Dalitz plot $m^2(K_{
m S}^0\pi^-)$ 1.51.00.5decays 1.5

$$d\Gamma\left(\begin{array}{c} (-) \\ B \end{array} \rightarrow [f]_D \begin{array}{c} (-) \\ h \end{array} \right) / dp$$

Measuring the decay rate at a phase space point **Model dependent approach:** The decay rate is fitted using some model for the D decay amplitudes. 0.52.02.5

It is possible to study also B cascade decays, with a three-body final state of the D

Roberto Di Palma

 $m^2(K_{\rm S}^0\pi^+)$ [GeV²/c⁴]

GGSZ Observables

meson (e.g. $f = K_{s}^{0}\pi^{+}\pi^{-}$).

Measuring the decay rate at a phase space point

$$d\Gamma\left(\begin{array}{c} (-) \\ B \end{array} \rightarrow [f]_D \begin{array}{c} (-) \\ h \end{array} \right) / dp$$

Model dependent approach: The decay rate is fitted using some model for the D decay amplitudes.

Model independent approach: Integrating over the bins and solving a system of 4kequations $\Gamma_{\pm i}(\check{B} \rightarrow [f]_D \check{h})$ for 2k + 4unknowns.

It is possible to study also B cascade decays, with a three-body final state of the D

Observables!! $= r_R \cos(\delta_R \pm \gamma)$ $y_{\pm}^{Dh} = r_B \sin(\delta_B \pm \gamma)$

Roberto Di Palma

Neutral *B* mesons

Charm 23

Neutral B mesons

$$\phi_{\lambda} = \arg \left[\left(-\frac{V_{tb}^* V_{tq}}{V_{cb}^* V_{cq}} \right)^2 \left(-\frac{V_{ub} V_{ud}^*}{V_{cb} V_{cd}^*} \right) \left(-\frac{V_{ub} V_{ud}^*}{V_{cb} V_{cd}^*} \right) \right]$$

$$q = d: \quad -2\beta \qquad -\gamma$$

$$q = s: \quad 2\beta_s \qquad -\gamma \qquad O(2)$$

$$\frac{d\Gamma(B_q^0 \to f)}{dt} \propto \cosh(\gamma \Gamma t) - G_f \sinh(\gamma \Gamma t) \pm C_f$$

Charm 23

Roberto Di Palma

Statistical treatment

We combine all the observables in a **Bayesian framework** to determine the posterior pdf and the marginalized distributions.

$P(\lambda | \mathbf{O})$

Charm 23

POSTERIOR PDF

We overloaded the classes present in the BAT library, sampling configurations of the parameters from the posterior through a Metropolis algorithm.

Roberto Di Palma

Bayesian Analysis Toolkit → home

13

This C++ version of BAT is still being maintained, addition to Metropolis-Hastings sampling, BAT.il sup transformations, and much more. See the <u>BAT.jl documentation</u>

https://bat.mpp.mpg.de/

Statistical treatment

$P(\vec{\lambda} | \mathbf{O}) \propto P(\mathbf{O} | \vec{\lambda})$

POSTERIOR PDF

We overloaded the classes present in the BAT library, sampling configurations of the parameters from the posterior through a Metropolis algorithm.

Roberto Di Palma

Charm 23

We combine all the observables in a **Bayesian framework** to determine the posterior pdf and the marginalized distributions.

Bayesian Analysis Toolkit

13

transformations, and much more. See the <u>BAT.jl documentation</u>

https://bat.mpp.mpg.de/

Statistical treatment

POSTERIOR PDF

We overloaded the classes present in the BAT library, sampling configurations of the parameters from the posterior through a Metropolis algorithm.

Roberto Di Palma

Charm 23

We combine all the observables in a **Bayesian framework** to determine the posterior pdf and the marginalized distributions.

FLAT PRIOR

We choose uniform priors, according to the physical ranges of the parameters $P_0(\vec{\lambda}) = const$

Bayesian Analysis Toolkit

home
download

transformations, and much more. See the <u>BAT.jl documentation</u>

https://bat.mpp.mpg.de/

CKM angle γ using all the inputs

Probability density

FIT RESULT $\gamma = (65.4 \pm 3.3)^{\circ}$

Roberto Di Palma

Charm 23

CKM angle γ with subsets of beauty observables

Charm 23

Charm mixing parameters

FIT RESULTS $x_{12} = (4.28 \pm 0.32)\%$ $y_{12} = (6.24 \pm 0.23)\%$

Charm 23

CPV parameters

FIT RESULTS (Kagan - Silvestrini) $\phi_2^M = (1.3 \pm 1.3)^\circ, \phi_2^\Gamma = (2.6 \pm 1.2)^\circ$

Charm 23

FIT RESULTS (familiar formalism) $\phi_2 = (-2.15 \pm 0.90)^\circ$, $|q/p| = 0.990 \pm 0.015$

Conclusions

• The parameters are **compatible** with the latest LHCb frequentist combination.

 ${}^{\rm o}$ The uncertainties on $\phi_2^{M,\Gamma}$ are still an order of magnitude grater than the estimates from the SM U-spin decomposition $\phi_{2}^{M,\Gamma} \approx 0.13^{\circ}$.

• The estimate of γ from neutral B meson observables is 4/5 less precise than the one obtained from charged mesons. (DIFFICULT TO CHECK CONSISTENCY) **Interesting prospects for the future**

• Waiting for the next generation of experiments (LHCb upgrades, Belle-II).

• Finding an efficient way to compute $\phi_{2}^{M,\Gamma}$ from first principles in the SM.

• New processes for neutral *B* mesons to improve the precision on γ (e.g. $B_a^0 \to D\phi$).

Charm 23

Roberto Di Palma

The results of the **combination** of charm and beauty observables have shown that:

Thank you for your attention!

If you have any remark, you can find me around or you can reach me at <u>roberto.dipalma@uniroma3.it</u>

Backup slides

Long and short distance contributions

Charm 23

U-spin decomposition

$$\Gamma_2 = (\bar{s}s - \bar{d}d)^2 = \mathcal{O}(\epsilon^2)$$
$$\Gamma_1 = (\bar{s}s - \bar{d}d)^2$$

 $\lambda_{\mu c}^{s} - \lambda_{\mu c}^{d} \approx 0.44 - i1.2 \times 10^{-4}$

Charm 23

Roberto Di Palma

$\Gamma_0 = (\bar{s}s + \bar{d}d)^2 = \mathcal{O}(1)$

 $\overline{l}d(\overline{s}s + \overline{d}d) = \mathcal{O}(\epsilon)$

$\lambda_{\mu c}^{b} \approx (5.7 + i12) \times 10^{-5}$

$\left[1 + (0.86 + i1.8) \times 10^{-3} \left(\frac{0.3}{\epsilon}\right) + (-6.4 + i7.8) \times 10^{-7} \left(\frac{0.3}{\epsilon}\right)^2\right]$

CPV phases

$$\phi_2^X = \arg \left[\frac{X_{12}}{X_2 (\lambda_{uc}^s - \lambda_{uc}^d)^2 / 4} \right]_{X=M\Gamma}$$

CP eigenstates

 $\delta\phi_{f_{CP}} = \mathcal{O}\left(\frac{\lambda_{uc}^{b}\sin(\gamma)}{\lambda}\right) \quad \text{Misalignments}$

SIM rough estimates

$$\phi_2^{\Gamma} \bigg|_{SM} = \arg \left[\frac{2\lambda_{uc}^b}{\lambda_{uc}^s - \lambda_{uc}^d} \frac{\Gamma_1}{\Gamma_2} \right] = \arg \left[-\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \times \left(\frac{1}{1 - \frac{V_{us}^* V_{cs}}{V_{ud}^* V_{cd}}} \right) \right] = \left| \frac{\lambda_{uc}^b}{\lambda_{uc}^d} \right| \sin(\gamma) \epsilon^{-1} \approx (2.2 \times 10^{-3}) \times \left[\frac{1}{1 - \frac{V_{us}^* V_{cd}}{V_{ud}^* V_{cd}}} \right]$$

Charm 23

Roberto Di Palma

APPROXIMATE UNIVERSALITY

 $\delta\phi_f = \phi_f^X - \phi_2^X \Big|_{X=M,\Gamma}$

CF/DCS decays

$$\delta\phi_f = \mathcal{O}\left(\frac{\lambda_{uc}^b}{\lambda_{uc}^d}\right)^2 \approx 5.5 \times 10^{-10}$$

Connecting the formalisms

$$|x| = 1/\sqrt{2} \left[x_{12}^2 - y_{12}^2 + \sqrt{(x_{12}^2 + y_{12}^2)^2 - 4x_{12}^2 y_{12}^2 \sin^2 \phi_{12}} \right]^{1/2} = x_{12} + \mathcal{O}(\phi_{12}^2)$$

F A $y = 1/\sqrt{2} |y_{12}^2 - x_{12}^2 + \sqrt{(x_{12}^2 + y_{12}^2)^2}$ IVI Ι L $\left|\frac{q}{p}\right| = \left[\frac{x_{12}^2 + y_{12}^2 + 2x_{12}y_{12}\sin\phi_{12}}{x_{12}^2 + y_{12}^2 - 2x_{12}y_{12}\sin\phi_{12}}\right]^{1/4} = 1 + \frac{x_{12}y_{12}}{x_{12}^2 + y_{12}^2}\sin\phi_{12} + \mathcal{O}(\phi_{12}^2)$ Ι A R $\tan(2\phi_{\lambda_f}) = -\frac{x_{12}^2 \sin 2\phi_f^M + y_{12}^2 \sin 2\phi_f^M}{x_{12}^2 \cos 2\phi_f^M + y_{12}^2 \cos 2\phi_f^M}$

Roberto Di Palma

$$\left[\frac{y_{2}^{2}}{2}\right]^{2} - 4x_{12}^{2}y_{12}^{2}\sin^{2}\phi_{12} \left[\frac{y_{12}^{2}}{2} + \mathcal{O}(\phi_{12}^{2})\right]$$

$$\frac{p_f^{\Gamma}}{b_f^{\Gamma}} \approx -\frac{x_{12}^2}{x_{12}^2 + y_{12}^2} \phi_f^M - \frac{y_{12}^2}{x_{12}^2 + y_{12}^2} \phi_f^{\Gamma} + \mathcal{O}(\phi_{12}^2)$$

CPV in pure mixing

FIT RESULT $\phi_{12} = (-1.3 \pm 1.8)^{\circ}$

(quasi-) GLW

 $\mathfrak{A}_{f_{CP}}^{h} = \frac{\Gamma(B \to [f_{CP}]_{D}h) - \Gamma(\bar{B} \to [f_{CP}]_{D}\bar{h})}{\Gamma(B \to [f_{CP}]_{D}h) + \Gamma(\bar{R} \to [f_{CP}]_{D}\bar{h})}$

 $\Omega^{h}_{f_{CP}} = \frac{\Gamma(B \to [f_{CP}]_{D}h) + \Gamma(\overline{B} \to [f_{CP}]_{D}\overline{h})}{\Gamma(B \to [f]_{D}h) + \Gamma(\overline{B} \to [\overline{f}]_{D}\overline{h})}$

 $\tilde{\mathfrak{R}}_{f_{CP}}^{h_1/h_2}(f) = \frac{\Omega_{f_{CP}}^{h_1}(f)}{\Omega_{f_{CP}}^{h_2}(f)}$

 $\Re^{h}_{f_{CP}}(f) = \frac{\mathscr{B}(\overline{D^{0}} \to \overline{f})}{\mathscr{B}(\overline{D^{0}} \to f_{CP})} \Omega^{h}_{f_{CP}}(f)$

Charm 23

Roberto Di Palma

$$(\text{quasi-}) \text{ ADS}$$

$$A_h^{sup,fav}(f) = \frac{\Gamma(B \to [\bar{f}(f)]_D h) - \Gamma(\overline{B} \to [f(\bar{f})]_D \overline{h})}{\Gamma(B \to [\bar{f}(f)]_D h) + \Gamma(\overline{B} \to [f(\bar{f})]_D \overline{h})}$$

$$R_h^{ADS}(f) = \frac{\Gamma(B \to [\bar{f}]_D h) + \Gamma(\bar{B} \to [f]_D \bar{h})]}{\Gamma(B \to [f]_D h) + \Gamma(\bar{B} \to [\bar{f}]_D \bar{h})}$$

 $R^{sup,fav}_{h_1/h_2}(f) = \frac{\Gamma(B \to [\bar{f}(f)]_D h_1) + \Gamma(\overline{B} \to [f(\bar{f})]_D \overline{h}_1)}{\Gamma(B \to [\bar{f}(f)]_D h_2) + \Gamma(\overline{B} \to [f(\bar{f})]_D \overline{h}_2)}$

$$R^{h}_{+}(f) = \frac{\Gamma(\overline{B} \to [f]_{D}\overline{h})}{\Gamma(\overline{B} \to [\overline{f}]_{D}\overline{h})} \quad R^{h}_{-}(f) = \frac{\Gamma(B \to [\overline{f}]_{D}\overline{h})}{\Gamma(B \to [f]_{D}\overline{h})}$$

