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Urgent theoretical progress is needed in order to provide an estimate in the Standard Model of the
recent measurement by LHCb of direct CP violation in charm-meson two-body decays. Rescattering
effects must be taken into account for a meaningful theoretical description of the amplitudes involved
in such category of observables, as signaled by the presence of large strong phases. We discuss the
computation of the latter effects based on a two-channel coupled dispersion relation, which exploits
isospin-zero phase-shifts and inelasticity parameterizations of data coming from the rescattering
processes ππ → ππ, πK → πK, and ππ → KK. The determination of the subtraction constants
of the dispersive integrals relies on the leading contributions to the transition amplitudes from the
1/NC counting, where NC is the number of QCD colours. Furthermore, we use the measured values
of the branching ratios to help in selecting the non-perturbative inputs in the isospin limit, from
which we predict values for the CP asymmetries. We find that the predicted level of CP violation
is much below the experimental value.

I. INTRODUCTION

Symmetries, whether exact or not, played a central role
in the formulation of the Standard Model (SM), and offer
an avenue to move beyond it. The violation of Charge-
Parity (CP) symmetry in the SM emerges from a single
parameter, encoded in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. Whatever the physics that lies Beyond
the SM (BSM) is, it generally introduces new sources of
CP violation, challenging the minimal picture depicted
by the SM. Therefore, a prominent way to hunt for BSM
physics consists of studying transitions that change quark
flavour, and in particular cases that are sensitive to CP
violation. Being a manifestation of the weak sector of the
SM, CP-violating observables are sensitive to high ener-
gies, helping to collect hints of BSM dynamics beyond
the electroweak scale.

The single CP-violating phase of the Kobayashi-
Maskawa (KM) mechanism of the SM must be responsi-
ble for CP violation across different flavour sectors. This
mechanism has been tested in the bottom and strange
sectors (see Ref. [1]), but tests in the charm sector are
still missing. Other than providing novel tests of the
KM mechanism, charm constitutes physics of the up-
type and is then complementary to the down-type sec-
tor, which is comparatively better known. In particular,
the charm sector offers the opportunity to understand
QCD at intermediate energy regimes, namely, in between
the light flavours and the bottom, in both of which cases
there exist consolidated theoretical tools. Moreover, with
charm physics one can also access flavour-changing neu-
tral currents (FCNCs) of the up-type, where a more ef-
fective Glashow-Iliopoulos-Maiani (GIM) mechanism ap-
plies, which represents an opportunity for clear identifi-
cation of BSM contributions.

In regard of tests of the KM mechanism, CP viola-
tion in the charm sector has been established recently
by LHCb [2], which measured the difference of direct CP

asymmetries in D0 decays

∆Adir
CP = (−15.7± 2.9)× 10−4 (1)

between final states involving two charged kaons
ACP (D

0 → K−K+), or two charged pions ACP (D
0 →

π−π+), where1

ACP (i→ f) ≡ |⟨f |T |i⟩|2 − |⟨f |T |i⟩|2

|⟨f |T |i⟩|2 + |⟨f |T |i⟩|2
(2)

= Σj [pj sin(∆δj) sin(∆ϕj)]i→f ,

T being the transition matrix. In order to have a non-
vanishing CP asymmetry, one needs both differences of
weak (∆ϕ) and strong (∆δ) phases, as indicated schemat-
ically in the right-hand side of Eq. (2); therein, the
sum consists of all possible interference terms j among
pairs of amplitudes that have simultaneously different
weak (∆ϕj ̸= 0 (modπ)) and strong phases (∆δj ̸=
0 (modπ)), and pj scales like the ratio of a CP-odd over
a CP-even amplitudes. Weak phases flip sign under CP
transformation, while strong phases are left unchanged.
There is an active experimental research program, as at-
tested by the following very recent results [3]:

ACP (D
0 → π−π+) = (+23.2± 6.1)× 10−4 , (3)

ACP (D
0 → K−K+) = (+7.7± 5.7)× 10−4

(which are correlated at the level of 0.88, and the value of
ACP (D

0 → π−π+) is based on Eq. (1)). There are also
available bounds on CP violation for many other channels
(see App. A). Much progress is expected in the years to
come, thanks to LHCb and Belle II, which will largely
improve the sensitivity to sources of CP violation; also,

1 Time-integration is left implicit; the contribution of indirect CP
violation is negligible [2].
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BESIII has an active research program in charm physics.
As a benchmark, the accuracy in some CP asymmetries
will be improved by about one order of magnitude.

On the other hand, theory has to match the observed
experimental progress. As previously stated, in the SM
the weak phase comes from the CKM matrix. It is yet
unknown whether the source of CP violation therein can
explain the measurement of ∆Adir

CP , or whether this ob-
servable signals the emergence of non-SM sources of CP
violation: this is due to the presence of non-perturbative
QCD effects that are extremely challenging to describe,
precluding precision flavour studies at the present mo-
ment. A dynamical mechanism for the generation of
the strong phases is the rescattering of on-shell parti-
cles, in particular pion and kaon pairs. It cannot be
stressed enough how important the role played by the
strong phases in describing CP asymmetries is. Indeed,
large strong phases generated in such dynamical way via
rescattering effects are also associated to large modu-
lations of the amplitudes, that must therefore be fully
taken into account in predictions of the SM amplitudes.
The main interest of this work is the determination of
these non-perturbative effects, and their impact on the
prediction of the CP asymmetry.

A similar problem happens in the case of kaon decays.
The SM description of the measured direct CP viola-
tion therein requires the introduction of non-perturbative
QCD inputs. Such inputs can be determined via the
use of Dispersion Relations (DRs) [4, 5]. The analysis
is simpler compared to charm-meson decays, since the
only relevant final state accessible from kaon decays are
pion pairs, motivating an elastic analysis. In this case,
Watson’s theorem [6] applies, and the DRs have a known
explicit analytical solution [7, 8]. Moreover, one also dis-
poses of a well established effective field theory, which is
chiral perturbation theory (χPT) for the three lightest
flavours [9–11]. In order to ensure the convergence of the
dispersive integrals and to limit the dependence on the
high-energy domain, DRs are eventually “subtracted”,
and χPT provides the subtraction constants of DRs. Al-
ternatively, χPT provides a framework in which rescat-
tering effects can be computed perturbatively. It is then
apparent that DRs provide the resummation of infrared
chiral logarithms, which are process independent, while
subtraction constants encode the process-dependent ul-
traviolet dynamics. Importantly, both approaches show
a good agreement [4, 5, 12–16].

In the case of charm physics, we will also employ DRs,
which result from two basic principles of any Quantum
Field Theory: analyticity (due to causality) and unitar-
ity. In the present case, however, the required analysis
is non-elastic because the D0 mass lies well above the
threshold for production of kaon pairs. We have then a
set of integral equations related by unitarity. These equa-
tions have to be solved numerically, as no explicit ana-
lytical form of the solution is known in general. We are
going to include in our analysis only pion and kaon pairs,
for which we dispose of abundant data, and neglect fur-

ther channels in this work. Dealing with other channels
requires a different set of techniques, that we postpone
to future work. Having pions and kaons, we need as in-
puts two phase-shifts and one inelasticity, which accounts
for the probability of transition between pion and kaon
pairs; we use available parameterizations for them [17–
20]. As in the elastic case of kaon decays into pion pairs,
we also need some physical input for the subtraction con-
stants. We employ large-NC counting for their determi-
nation, based on an expansion in powers of 1/NC with
NC the number of QCD colours [21–23], which is known
to provide an understanding of many observed features of
non-perturbative strong dynamics [24, 25]. Preliminary
results were communicated in Refs. [26, 27].
Phase-shifts and inelasticity at the energy MD have

been applied, non-dispersively, in e.g. Refs. [28–30].2 Al-
though they recognize the importance of rescattering ef-
fects, these approaches do not capture their full picture,
which is the aim of employing a dispersive treatment.
Previous discussions of DRs in the context of charm-
meson decays include Refs. [32–36], which have not ad-
dressed CP violation, being the main focus here. Com-
pared to these references, we discuss DRs and the inputs
that we employ in details.
Various other non-dispersive analyses have also been

made for the description of multiple charm-meson de-
cay modes, such as topological approaches, the use of
SU(3)F or its sub-groups, transitions assisted by inter-
mediate resonances, etc.; see Refs. [37–51].
Also note that calculations based on QCD light-cone

sum rules [52, 53] indicate that the SM cannot account
for the large level of CP asymmetry observed by LHCb.
However, light-cone sum rules have not been extensively
tested in the charm sector, requiring alternative methods
to support such an extraordinary claim.
Let us also mention that, although methods to deal

with rescattering in the lattice [54] are progressing fast,
the typical energy scale of charm processes still represents
an overwhelming problem for Lattice QCD methods.
Having stressed the need for dealing with strong inter-

actions, let us point out that there are ways, however,
of extracting properties of weak interactions without the
need to describe in details the strong dynamics. In the
charm sector, we are not at that stage yet: we cannot rely
on a strategy such as, for instance, the one employed in
the extraction of the unitarity angle α from charmless
B-meson (quasi-)two-body decays having pions and rhos

2 Note that Ref. [30] writes for isospin-zero:(
AD0→ππ
AD0→KK

)
= SS

(
V ∗
cdVud aππ

V ∗
csVus aKK

)
(4)

with aππ , aKK real, which seems not to implement the result
expected for the strong phase from Watson’s theorem in the limit
where the rescattering process is elastic. Also note that Ref. [28]

writes A = S
1/2
S Abare, where S

1/2
S encodes the rescattering part,

implementing correctly that limit. For a discussion of the latter
approach, see Ref. [31].
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in the final state, since we do not dispose of the necessary
number of measurements at the required level of accuracy
to use an isospin analysis [55].

Conversely, the problem we deal with here is less a
question of precision as it is in the case of bottom physics,
for instance. In that sector, one will face in the (near)
future the need for better describing sub-leading effects
(e.g., long-distance penguin effects in the extraction of
β, better controlling experimental systematics from de-
cays of charm-mesons in the extraction of γ, dealing with
isospin-breaking in the extraction of α, etc.). Rather,
in the charm sector we cannot rely on the experimental
(such as isospin analysis) and theoretical (such as heavy
quark expansion, due to the slower convergence of the
perturbative series) approaches already employed in the
other flavour sectors. It is our goal to employ a data-
driven formalism, embodied by the use of DRs.

To conclude this introduction, note that the large level
of CP violation observed in ∆Adir

CP has triggered studies
of contributions from BSM, see Refs. [53, 56, 57] for re-
cent studies.

This article is organized as follows: in Sec. II we
set the relevant weak interactions; in Sec. III we in-
troduce the DRs; their necessary inputs are discussed
in Sec. III A, and the numerical solutions of the DRs
are given in Sec. III B, while the subtraction constants
of once-subtracted DRs are discussed in Sec. III C; in
Sec. IV we discuss the available mechanisms of CP vio-
lation, and give the predictions for the CP asymmetries;
conclusions follow in Sec. V. A series of appendices dis-
cuss more technical aspects, and fix possible conventions.

II. EFFECTIVE WEAK INTERACTIONS

The full Hamiltonian at low energies contains (renor-
malizable) strong and electromagnetic interactions, the
kinematic terms for the light quarks and the charm quark
(including their masses), and (non-renormalizable) effec-
tive weak interactions. The effective interaction Hamilto-
nian density for ∆C = 1 up to operators of dimension-six,
valid for energy scales µb > µ > µc (µq being the energy
scale at which the quark of flavour q is integrated out),
is the following [58]:3

Heff =
GF√
2

[
2∑
i=1

Ci(µ)
(
λdQ

d
i + λsQ

s
i

)
(5)

−λb

(
6∑
i=3

Ci(µ)Qi + C8g(µ)Q8g

)]
+ h.c.

where

3 Indices 1 and 2 are exchanged with respect to Ref. [58], and
C1,2 (C3,...,6) are called z2,1 (respectively, v3,...,6) therein. We
are not including in the effective Hamiltonian of Eq. (5) neither
electroweak penguins nor the electromagnetic dipole.

λq = V ∗
cqVuq , q = d, s, b . (6)

Unitarity of the 3× 3 CKM matrix V implies:

λd + λs + λb = 0 . (7)

The basis of operators is the following:

Qd1 = (d̄c)V−A(ūd)V−A , (8)

Qd2 = (d̄jci)V−A(ūidj)V−A
Fierz
= (ūc)V−A(d̄d)V−A ,

Qs1 = (s̄c)V−A(ūs)V−A ,

Qs2 = (s̄jci)V−A(ūisj)V−A
Fierz
= (ūc)V−A(s̄s)V−A ,

Q3 = (ūc)V−A
∑
q

(q̄q)V−A ,

Q4 = (ūjci)V−A
∑
q

(q̄iqj)V−A

Fierz
=

∑
q

(q̄c)V−A(ūq)V−A ,

Q5 = (ūc)V−A
∑
q

(q̄q)V+A ,

Q6 = (ūjci)V−A
∑
q

(q̄iqj)V+A

Fierz
= −2

∑
q

(q̄c)S−P (ūq)S+P ,

Q8g = − gs
8π2

mcūσµν(1+ γ5)G
µνc ,

where (V ± A)µ = γµ(1 ± γ5), S ± P = 1 ± γ5, and i, j
are colour indices. The SM Wilson coefficients are fully
known to next-to-leading order (NLO) in perturbative
QCD, with some NNLO ingredients available [59]. Their
values are given in App. A.4 Due to the GIM mechanism,
(short-distance) penguin operators are absent at scales
µ > µb, and result from the NLO matching at µb, and
the running from µb to µc; they come with small Wilson
coefficients and thus give suppressed contributions to CP
violation. When rescattering effects are large, the main
contribution to the CP asymmetries is expected to come
from the non-unitarity of the 2× 2 CKM sub-matrix, see
Sec. IVA below. This should be contrasted to the case
of bottom physics, where rescattering effects are compar-
atively much smaller, possibly allowing for perturbative
treatments.

4 We indicate Fierz rearrangements when introducing the basis of
operators for later convenience; the Wilson coefficients are cal-
culated at the NLO in the un-Fierzed basis. The gluonic dipole
does not affect the Wilson coefficients of the penguin operators
at NLO in perturbative QCD.
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III. DISPERSION RELATIONS

In describing D → ππ,KK to first order in weak in-
teractions a discontinuity equation can be written for the
transition amplitudes analytically extended to the com-
plex plane (of the invariant mass squared s of the pseu-
doscalar pair). The discontinuity is set by the rescatter-
ing of the light particles that are stable under strong in-
teractions, with the right-hand cut starting at the thresh-
old for production of pion pairs, and no left-hand cut
for the transition amplitudes; for an introduction, see
Ref. [60]. The strong dynamics is non-perturbative in na-
ture and has some useful properties: it conserves flavour,
C, P, CP, isospin and G-parity. The rescattering among
light, stable final states gives origin to the strong phases
necessary for a non-vanishing CP asymmetry. In the elas-
tic limit, such a phase in the weak decay can be extracted
directly from the phase-shift in the rescattering of pions.
More can be learnt about the rescattering by exploiting
its analyticity in the relevant kinematical variables, relat-
ing the dispersive/real and absorptive/imaginary parts of
the rescattering amplitudes.

In the little Hilbert space (once the global energy-
momentum conservation condition has been factored
out), the total S matrix can be written as S = 1 + i T ,
which implies the unitarity relation T − T † = i TT † =
i T †T . In our particular case, S and T are 3 × 3 ma-
trices describing all possible transitions among the basis
of initial and final states {D,ππ,KK}. Restricting to
the {ππ,KK} subspace, the partial-wave (and isospin)
projected strong SS matrix can be written in the form:

(SS)
I
J = (1+ i TS)

I
J = 1+ 2i Σ1/2(s) T IJ (s) Σ

1/2(s) .
(9)

SS satisfies the unitarity relation S†
SSS = SSS

†
S = 1, and

TS inherits TS − T †
S = iTST

†
S = iT †

STS . Since the decay-
ing D mesons are spinless, the total angular momentum
of the daughter pair of pseudoscalars is J = 0. Owing
to Bose symmetry, the two-pion state can have isospin
I = 0 and 2; the isospin of the kaon pair can take the
values I = 0, 1. Thus, there are two different isosinglet
states that get coupled through the rescattering dynam-
ics. The kinematic factors Σi(s) = Θ(s − 4M2

i )σi(s)
incorporate the threshold conditions and the mass cor-
rections to the two-body center-of-mass three-momenta.
In the two-channel isosinglet (I = 0) case, Σ(s) becomes
a 2× 2 matrix:

Σ(s) = diag
[
Θ(s− 4M2

π)σπ(s) , Θ(s− 4M2
K)σK(s)

]
,

σi(s) = (1− 4M2
i /s)

1/2 . (10)

The different isospin components of the full ampli-
tudes are given by T Iππ(s) ≡ T ID→ππ(s) and T IKK(s) ≡
T ID→KK(s). At lowest order in weak interactions, the
unitarity of the S and SS matrices implies

Σ1/2

(
T 0
ππ(s+ iϵ)

T 0
KK(s+ iϵ)

)
= (SS)

0
0 Σ1/2

(
T 0
ππ(s− iϵ)

T 0
KK(s− iϵ)

)
.

(11)

We can decompose the full amplitudes as(
T 0
ππ(s)

T 0
KK(s)

)
= Ω(0)(s)

(
T

0 (B)
ππ

T
0 (B)
KK

)
, (12)

with the corresponding changes for I = 1, 2, where T
I (B)
ππ

and T
I (B)
KK will be referred to as “bare amplitudes” (for

which we will omit their possible s dependence); they
are polynomials in s and may contain real zeros, while
Ω(I)(s) has no zeros or poles. As we will see, the bare
amplitudes contain the CP-odd phases necessary to gen-
erate the CP asymmetries. The rescattering part Ω(I)(s)
of the transition amplitude satisfies then the following
discontinuity equation:

Ω(I)(s+ iϵ) =
[
1+ 2i T I0 (s) Σ(s)

]
Ω(I)(s− iϵ)

≡ SI(s) Ω(I)(s− iϵ) , (13)

where SI(s) = 1 + 2iT I0 (s) Σ(s), with SI(s)SI(s)∗ =
SI(s)∗SI(s) = 1. This implies:

ImΩ(I)(s+ iϵ) = T I∗0 (s) Σ(s) Ω(I)(s+ iϵ) , (14)

after using that Ω(I)(s − iϵ)∗ = Ω(I)(s + iϵ) (Schwarz
reflection principle). In the following, we will drop “+iϵ”
from Ω(I)(s + iϵ). The analyticity properties of Ω(I)(s)
guarantee that it satisfies the Cauchy integral relation:

Ω(I)(s) =
1

π

∫ ∞

4M2
π

T I∗0 (s′)Σ(s′)Ω(I)(s′)

s′ − s− iϵ
ds′ ; (15)

we will later adopt the normalization Ω(I)(s0) = 1, at a
subtraction point s0. In the two-channel coupled problem
(I = 0), we have:

T 0
0 (s) =

η00(s) e
2iδ00(s)−1

2i σπ(s)
|g00(s)| eiψ

0
0(s)

|g00(s)| eiψ
0
0(s) η00(s) e

2i(ψ0
0(s)−δ00(s))−1

2i σK(s)

 ,

(16)
with the inelasticity parameter

η00(s) =
[
1− 4σπ(s)σK(s) |g00(s)|2 (17)

× Θ(s− 4M2
π)Θ(s− 4M2

K)
]1/2

.

The sign of the off-diagonal elements of T 0
0 (s) is fixed at

low energies by χPT [61], given a choice of convention
for the kaon pair isospin decomposition.
One can use that (Sokhotski-Plemelj relation):

1

x− x0 − iϵ
= P

1

x− x0
+ iπ δ(x− x0) (18)

to write alternatively:

Re[Ω(I)(s)] =
1

π
−
∫ ∞

4M2
π

T I∗0 (s′)Σ(s′)Ω(I)(s′)

s′ − s
ds′

=
1

π

(
−
∫ 4M2

K

4M2
π

+ −
∫ ∞

4M2
K

)
Im[Ω(I)(s′)]

s′ − s
ds′ (19)
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(the slashed integral represents its principal value). Ex-
ploiting that the right-hand side is real, we get for the
integration domain s′ ⩾ 4M2

K and any m ∈ {π,K}:(
Re[(T 0

0 )ππ]σπ Re[(T 0
0 )πK ]σK

Re[(T 0
0 )Kπ]σπ Re[(T 0

0 )KK ]σK

)(
Im[Ω

(0)
πm]

Im[Ω
(0)
Km]

)
(20)

=

(
Im[(T 0

0 )ππ]σπ Im[(T 0
0 )πK ]σK

Im[(T 0
0 )Kπ]σπ Im[(T 0

0 )KK ]σK

)(
Re[Ω

(0)
πm]

Re[Ω
(0)
Km]

)
.

Admitting that the 2 × 2 matrix on the left-hand side
is invertible (the matrix T 0

0Σ is invertible), then one can
solve for Im[Ω(0)] ≡ b, which is plugged into the previous
integral equation for the integration range s′ ⩾ 4M2

K :
indeed, this matrix equation can be written as R · bm =
I · am ⇔ bm = R−1 · I · am if R invertible, with obvious
correspondence with Eq. (20). In the integration interval
4M2

π ⩽ s′ ⩽ 4M2
K we have, like in the uncoupled case

(and consider ψI0 = δI0 modπ in this region):

Re[(T I0 )jπ] Im[Ω(I)
πm] = Im[(T I0 )jπ] Re[Ω

(I)
πm] . (21)

The adopted strategy is to solve for the real parts, and
then use the previous relations to determine the imagi-
nary parts. Then:

am =
1

π
−
∫ 4M2

K

4M2
π

ds′
1

s′ − s
(22)

×
(

tan δ00(s
′) 0

|g00(s′)|σπ(s′)/ cos(δ00(s′)) 0

)
· am

+
1

π
−
∫ ∞

4M2
K

ds′
R−1 · I · am

s′ − s
.

We then solve for both aπ and aK , and the final solution
is:

Re[Ω(0)] = (aπ ⊗ aK) , Im[Ω(0)] = (bπ ⊗ bK) ,
(23)

where ⊗ means that we combine the two dimension-2
vectors represented as columns into a 2× 2 matrix. Note
that Ω(0)(s0) = 1 implies that aπ and aK are indepen-
dent, and a similar comment applies for the imaginary
parts bπ and bK . The system of independent functions
χ(k)(s) ≡ ak + i bk built from these real and imaginary
parts is called a fundamental system of solutions satis-
fying the discontinuity problem of Eq. (13), see Ref. [7].
There are n such solutions in an n-channel coupled case.
A similar discussion holds for once-subtracted DRs. The
use of subtracted DRs limits the dependence to high-
energy data, which are typically less accurate or even
missing; they may also be necessary in order to guaran-
tee the convergence of the dispersive integrals.

In the elastic limit, one can solve the integral equation
explicitly [7, 8]. Considering one subtraction:

Ω(I)(s) = exp
{
i δI0(s)

}
exp

{
s− s0
π

−
∫ ∞

4M2
π

dz

z − s0

δI0(z)

z − s

}
,

(24)

where s0 ≤ 4M2
π is the subtraction point, at which we

have imposed Ω(I)(s0) = 1. The rightmost exponential
above carries no zeros nor poles for well-behaved phase-
shifts; it is obviously non-negative. It is manifest that
large phase-shifts are associated to large modulations of
|Ω(I)(s)|. The phase-shift and the Omnès factor |Ω(I)(s)|
encode the effects of rescattering, and are necessary for
a good qualitative and quantitative description of the
transition amplitudes in the weak decay. It is important
stressing the universal character of this equation, which
depends only on the phase-shift, and not the particular
electroweak process under discussion.
The previous equation leads to the following asymp-

totic behavior (see e.g. Ref. [60]):

Ω(I)(s) → sx , x = −δ
I
J(∞)− δIJ(4M

2
π)

π
, (25)

where at threshold δIJ(4M
2
π) = 0. Therefore, if the

Omnès factor is supposed to vanish asymptotically, as
it is expected when building form factors from the lat-
ter rescattering factor (see e.g. Ref. [62]), in the single-
channel analysis one requires δIJ(∞) > δIJ(4M

2
π).

In the inelastic case, the determinant of Ω(I)(s) has
an explicit analytical solution, from which a similar dis-
cussion holds. In the two-channel analysis for instance,
Eq. (13) leads to:

detΩ(I)(s+ iϵ) = exp
{
2 i ψIJ(s)

}
detΩ(I)(s− iϵ) , (26)

which does not depend on the inelasticity.5 A property
of the fundamental system of solutions is that the indi-
vidual indices xk, describing the asymptotic behaviour
of the fundamental solutions χ(k)(s), do not depend on
the particular choice of the fundamental system of solu-
tions (see also next paragraph). Their sum satisfies the
relation [7]:

n∑
k=1

xk = x , (27)

where x is the index resulting from taking the determi-
nant of Eq. (13) in the n-channel coupled analysis. For
instance, in the two-channel problem under discussion,
x = −(ψ0

0(∞)− ψ0
0(4M

2
π))/π.

Regarding the asymptotic behaviour, we comment on
a specific case of later interest: if the sum of indices is
x = −2, then one can have two independent solutions
that vanish asymptotically and simultaneously, i.e., both
having indices x1 = −1 and x2 = −1. If on the other

5 We note that we have not been able to find a function of the two-
channel Omnès matrix other than its determinant that does not
depend on the inelasticity, for which there is an explicit analytical
solution.
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hand the sum of indices is x = −3 for instance, then
one can have two solutions that vanish asymptotically,
i.e., xi = −2 and −1, but they are not unique: to the
solution that goes as −1 one can add a contribution from
the one that goes as −2 (times a polynomial of degree up
to one) and take this as the fundamental solution that
replaces the previous one, while keeping the condition
Ω(I)(s0) at a subtraction point s0. In such cases, more
physical information about the sought solutions has to
be provided [63].

A. Experimental inputs for the DRs

Hereafter we discuss datasets and parameterizations of
the inputs for DRs in isospin-zero and isospin-two. We
point out the main qualitative features observed in phase-
shifts and inelasticity, shown in Figs. 1, 2, and 3. We take
the constrained fits to data (CFD) enforcing dispersive
relations of Refs. [17–20], that we discuss in more details
below.

1. Isospin-zero phase-shift of pion pairs

We use the analyses of Refs. [18, 19]. As seen from the
top-left panel of Fig. 1, the phase-shift starts at zero at
the pion pair production threshold, and shows a steady
increase sufficiently below the threshold for kaon pair pro-
duction, due to the presence of the σ resonance, which is
located deep into the first Riemann sheet, away from the
real axis. Then, there is a quick increase of the phase-
shift, due to the presence of the f0(980) resonance, which
is relatively narrow. Another analytical feature in the
region ∼ 1 GeV is the threshold for kaon pair produc-
tion. Subsequently, the phase-shift grows steadily; in
this energy region there exist the well-established reso-
nances f0(1370), f0(1500) and f0(1710), which to some
extent overlap among themselves (for a recent discussion
of f0(1370), see Ref. [64]).

Above around 1.42 GeV, Ref. [19] considers different
datasets, which are not consistent among themselves,
providing purely descriptive phase-shift parameteriza-
tions separately for each of them, see the top-right panel
of Fig. 1. Solution I [65–68] follows from a dataset that
extends up to E0 = 1.9 GeV, while the datasets leading to
solutions II [69] and III [70] extend up to E0 = 1.8 GeV.

2. Isospin-zero phase-shift of kaon pairs

We consider the combined analysis of ππ → KK and
Kπ → Kπ employing crossing symmetry of Ref. [20], see
also Ref. [71]. There are two possible solutions, B and
C, that are well compatible, see the bottom-left panel of
Fig. 1 (see also comments below). The curve extends up
to E0 = 2 GeV. There is a clear structure in the phase-
shift in the region 1.2−2 GeV, that might be in part due

to the isoscalar-scalar resonances mentioned above, with
the phase-shift decreasing at times.6

3. Isospin-zero inelasticity

Below the threshold for their on-shell production, vir-
tual kaon pairs produce off-diagonal elements in the two-
channel rescattering matrix, with their impact seen in
the first term in the right-hand side of Eq. (22). They
do not produce an absorptive part though, i.e., do not
alter the evolution of the phase motion, and the off-
diagonal phase-shift therein is then the one observed in
pion pair rescattering. Note, however, that it does not
mean that the inelasticity below the kaon pair threshold
varies, being η00 = 1 below this threshold. We consider
Refs. [20, 75] for a parameterization of such effect, illus-
trated in the left panel of Fig. 2 (for definiteness, when
not specified we employ sol. B), see also Ref. [71].
The inelasticity η00 can be extracted from the off-

diagonal T -matrix element |g00 | via a combined analysis
of ππ → KK and Kπ → Kπ, and is available up to
E0 = 2 GeV, as illustrated in the right panel of Fig. 2.
This leads to two solutions, B [76] and C [77, 78], cor-
responding to inconsistent datasets below ∼ 1.47 GeV,
and thus their parameterizations of the inelasticity dif-
fer substantially below that point. We combine the ef-
fect generated by off-shell kaon pairs [20, 75] with the
explicit parameterizations found in Ref. [20] valid above
2MK . The two sets of curves are combined at a matching
point of

√
1.2 GeV [75], and the corresponding solutions

will be called B’ and C’ in the following. There is a very
small discontinuity at the matching scale (of 9% for so-
lution B’, and of 8% for solution C’). Right above the
kaon pair threshold and below the matching scale, there
is a short window in which the unitarity bound is vio-
lated, manifested as the impossibility of defining a real
inelasticity therein via the use of Eq. (17). However, this
corresponds to a tiny region (long of ∼ 30 MeV for solu-
tion B’, and of ∼ 10 MeV for solution C’), in which we
set the inelasticity to zero.
An alternative for the extraction of the inelasticity η00

is to look directly at the rescattering process ππ → ππ.
The extraction of the parameterization for the phase-
shift of the pion pair system discussed above is done si-
multaneously to the extraction of the parameterization
for the inelasticity, for which then we also have three so-
lutions [19], illustrated in Fig. 3. As before, solution I
extends up to E0 = 1.9 GeV, while solutions II and III
extend up to E0 = 1.8 GeV. (We correct typos found

6 There is an interesting result in Quantum Mechanics, according
to which the phase-shift cannot decrease too quickly in order to
respect causality, see [72] and e.g. Ref. [73, 74]. In the present

situation, we observe that −2 ℏ c dψ
0
0(E

2)

dE
≲ 4 fm, which gives a

crude estimate of the minimum range of the potential as required
from causality.
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FIG. 1: Set of phase-shifts from Refs. [17–20] used in our analysis. The δ00(s) phase is shown in the upper panels for
2Mπ ≤

√
s ≤ 1.42 GeV (top, left) and

√
s ≥ 1.4 GeV (top, right), where solutions I (gray), II (blue) and III (green)

are given. The ψ0
0(s) phase is shown in the (bottom, left), for solutions B (blue) and C (red), which are very

compatible; below the kaon pair threshold, ψ0
0(s) = δ00(s). The δ

2
0(s) phase is shown in the (bottom, right), up to√

s = 1.4 GeV and starting from the pion pair threshold. All phases are given in degrees.

FIG. 2: Off-diagonal T -matrix element from Ref. [20] for solutions B (blue) and C (red). The two sets, valid along
the energy ranges from the pion pair threshold and up to 1.47 GeV (left) and from the the kaon pair threshold and

up to 2 GeV (right), are combined according to the procedure described in the text.

in Ref. [19], namely: ϵ4 in their Tab. 2 comes with the
wrong sign, and Ki must be multiplied by M2

K [75].) So-
lution III shows a sharp dip in the inelasticity around
∼ 1.6 GeV, and a distinguishing phase motion compared
to the other two solutions, which may signal the presence
of the resonance f0(1500). As further discussed later, in-
elasticities extracted in this way carry large uncertain-
ties. At the energy 2MK , the off-diagonal element re-
sulting from this inelasticity is combined with the one
from Refs. [20, 75], that describes off-shell kaon pairs.
This produces an abrupt change across a few MeV of the
off-diagonal T -matrix element at about 2MK , which is
expected to have a limited impact on the fundamental
Omnès solutions far away from this value of the energy.
Moreover, combining the two curves at 2MK generates

a consistent trend, since below (above) 2MK the modu-
lus of the off-diagonal T -matrix is decreasing (increasing)
quickly with increasing (decreasing) energies.

The different sets of inelasticities discussed above, so-
lutions I-III and solutions B’ and C’, display important
differences. In discussing solutions of the dispersive equa-
tions, we will show results for each of them separately.

4. Isospin-two phase-shift and inelasticity of pion pairs

The phase-shift starts at zero at the pion pair pro-
duction threshold, and decreases steadily in the region
extending up to about 1.45 GeV [79–81]. A parameteri-
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FIG. 3: Inelasticity from Ref. [19] extracted from pion pair rescattering. Below the kaon pair threshold, η00(s) = 1.
Three solutions are shown, namely, solutions I (left), II (center) and III (right).

zation is provided by Refs. [17, 82], see the bottom-right
panel of Fig. 1, which does not include Ref. [83]. The
extracted inelasticity is close to the elastic limit in that
energy range [17].

Although to our knowledge a parameterization is not
available (in particular, taking into account dispersive
constraints), Ref. [83] extracts data up to 2.2 GeV. It is
seen that the phase-shift has the tendency to decrease
up to 1.3 GeV, and then to increase subsequently. At
around MD, the phase-shift equals a few negative de-
grees, but carries a large uncertainty. There seems to be
a large inelasticity at around MD, although again large
uncertainties are present. (This overall behaviour of the
phase-shift can be reproduced via an elastic analysis re-
lying on χPT and Resonance Chiral Theory (RχT), with
t-channel exchange of ρ, etc.; see also Ref. [84].)

As discussed above around Eq. (25), the phase-shift
in an elastic analysis should become positive (vanish)
so that the Omnès solution goes to zero (respectively,
a constant) at infinity. This requires some underlying
physics to change the sign of the isospin-two phase-shift,
such as the presence of a resonance. We also note that
no distinct feature is seen in the isospin-two ππ → ππ
study of Ref. [85], for which however contributions to the
cross-section other than the S-wave become increasingly
important at higher energies.

We will later in the text extract the Omnès factor
|Ω(2)| from the branching ratio of the charged decay mode
D+ → π0π+, and vary the isospin-two phase-shift to re-
produce the D0 → π−π+, π0π0 branching ratios. We re-
serve further discussion about the isospin-two inelasticity
to future work [86].

B. Solutions of the coupled channel DRs

To employ the DRs, we extrapolate the phase-shift and
inelasticity curves discussed above beyond their indicated
endpoints E0 = 1.8− 2 GeV [87]:

δ00(E) = n∗π + (δ00(E0)− n∗π)fδ

(
E

E0

)
, (28)

δK(E) = ℓ∗π + (δK(E0)− ℓ∗π)fδ

(
E

E0

)
,

where the chosen fδ(x) = 2/(1 + xm
∗
δ ) has the virtue of

being a smooth function connecting the values at the end-

points to the asymptotic values (Ref. [87] takes m∗
δ = 3;

we note that the asymptotic behaviour of the phase-shift
involved in the vector form factor of the pion is discussed
in Ref. [88]). The values of n∗ + ℓ∗ ≥ 2 ensure that at
least one of the fundamental solutions tends to zero at
infinite energies. We take n∗, ℓ∗ as integer values (as it
results from having resonant effects; i.e., we neglect non-
resonant effects for this sake). Then, we set ℓ∗ = −1 since
δK(E) ≡ ψ0

0(E)−δ00(E) is close to −π at E0. Finally, we
take n∗ = 3. Moreover, it suffices to ensure the good be-
haviour of the fundamental solutions, as it leads in prac-
tice to two independent solutions of indices x1,2 = −1.
These solutions are uniquely determined, after specifying
the condition Ω(0)(s0) = 1 at the subtraction point s0.
A similar extrapolation is taken for the inelasticity:

η00(E) = η∞ + (η00(E0)− η∞)fη

(
E

E0

)
. (29)

Its limiting value is set to η∞ = 1. Together with the
limit values of the phase-shifts, these conditions satisfy
the asymptotic behaviour discussed in Ref. [89]. Large
values of m∗

η (i.e., η00 approaching faster its asymptotic
value) would require some underlying dynamics, such as
the appearance of resonances not yet firmly established
[90], and for this reason we later display only values in
the range m∗

η ∈ {1, 2, 3}.
To full generality, there is no known explicit solution

in the inelastic case. The numerical method used is de-
scribed in App. B (we discuss an explicit solution valid
under certain conditions in App. C), and relies on the
parameterization of data previously discussed.7

A sample of typical Omnès matrices is provided in
Tab. I for various scenarios: columns correspond to so-
lutions I-III for the phase-shifts, and also inelasticity;
the first block of rows corresponds to the inelasticity di-
rectly extracted from ππ → ππ, while the second block of
rows corresponds to the inelasticity calculated from the
off-diagonal T -matrix element as in Eq. (17), for which
there are solutions B’ and C’. We observe a strong de-
pendence of the Omnès solution with the inelasticity em-
ployed, which in the case of the first block of rows carries

7 In the N/D method, phase-shift parameterizations and Omnès
functions are extracted simultaneously in the fits to the rescat-
tering data [91, 92].
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a large uncertainty. Varying the latter uncertainties leads
to profiles η00 − δη00 , which seek to saturate the error bars
attached to the inelasticities found in Ref. [19] towards
smaller values of η00 .

8 In a companion paper, we provide
a discussion of CP asymmetries that does not depend on
the input employed for the inelasticity [93].

When calculating the Omnès matrices, we verify that

Ω
(0)
11 (M

2
K) is in good agreement with a similar calculation

relying on an elastic analysis [4, 5]: were there a sizable
difference, it would spoil the good comparison with the
χPT calculation of this same quantity.

C. Partial-wave transition amplitudes

In order to build transition amplitudes from the rescat-
tering effects encoded in Ω(0)(s) (or analogously for
isospin-one and -two, that we treat elastically), we need

to specify the polynomial ambiguities in T
0 (B)
ππ and T

0 (B)
KK

of the once-subtracted DRs. Summing over the possible
solutions to the two-channel coupled analysis problem,
times subtraction constants, we have:

(
T 0
ππ(s)

T 0
KK(s)

)
=

(
Ω

(0)
11 (s) Ω

(0)
12 (s)

Ω
(0)
21 (s) Ω

(0)
22 (s)

)(
T

0 (B)
ππ

T
0 (B)
KK

)
, (30)

where since we deal with charmed-meson decays, s →
M2
D.

The polynomials T
0 (B)
ππ and T

0 (B)
KK are fixed by physical

considerations relying on a large-NC expansion. In the
limit NC → ∞, the scattering phase-shifts are exactly
zero and, therefore, Ω(I)(s) = 1. Moreover, in this limit
the hadronic matrix elements of the short-distance four-
quark operators factorize into matrix elements of QCD

currents. The bare amplitudes T
0 (B)
ππ and T

0 (B)
KK corre-

spond then to tree insertions of different local operators,
current-current and penguin ones, while topologies be-
yond trees are generated via rescattering effects. The
factorized expressions are written in terms of decay con-
stants and form factors (e.g., D → π, or D → K), given
in Apps. D and E. It follows from the present discussion
that the subtraction constants require perturbative and
non-perturbative elements: decay constants, form fac-
tors, and Wilson coefficients. As it has been discussed,
rescattering is taken into account dispersively, and it is
in fact suppressed in the large-NC counting. Decay con-
stants and form factors also integrate non-perturbative
QCD effects that, although sub-leading in the large-NC
counting, are not included in the rescattering matrix
Ω(I)(s). Note that the resulting subtraction constants
are real (in the CP-conserving limit), strong complex

8 Possible correlations among the different uncertainties for phase-
shifts and inelasticity are neglected here.

phases being developed in the rescattering. In the con-
text of K → ππ transitions, the polynomial ambiguities
can be determined via χPT [4, 5]. (For a discussion of
form factors built from the same rescattering effects, their
asymptotic behaviour, and the use of χPT to determine
the subtraction constants, see e.g. Refs. [61, 87, 94–96].)
The subtraction point is taken at s0 = M2

π , as sug-

gested by T
0 (B)
ππ ∝M2

D−M2
π . At this point, Ω

(0) is set to

the identity 1. Any modulation of Ω(0) above s0 results
then from rescattering effects. We observe, however, a
very small dependence with the choice of the subtraction
point, as seen from the two following solutions:

Ω(0)(M2
D) =

(
0.59 e+1.81 i 0.64 e−1.74 i

0.59 e−1.38 i 0.62 e+2.26 i

)
, s0 = 0 ,

Ω(0)(M2
D) =

(
0.57 e+1.71 i 0.61 e−1.72 i

0.56 e−1.27 i 0.58 e+2.24 i

)
,

s0 = 4M2
π , (31)

which are calculated with the same inputs as used for the
so-called reference case of Tab. I to be discussed below,
but with different subtraction points. Moreover, given
that M2

π ,M
2
K ≪ M2

D, we observe a very small numer-
ical impact of keeping the masses of the light mesons
with respect to neglecting them in the expressions of the
physical observables.

IV. THEORETICAL PREDICTIONS

Before moving to the numerical predictions for branch-
ing ratios and CP asymmetries, we first discuss the mech-
anisms at play responsible for generating a non-vanishing
level of CP violation. Detailed technical discussions are
given in a series of appendices: App. D discusses the
relevant decay constants and form factors, App. E gives
the expressions for the bare decay amplitudes, and the
isospin decomposition of the transition matrix elements
is detailed in App. E 1.

A. Mechanisms of CP violation

We consider tree insertions of the short-distance op-
erator basis provided in Eq. (8), whose matrix elements
can be found in App. E. The CP-violating effects are
generated through the interference of amplitudes with
different weak and strong phases. Let us consider first
the isospin-zero decay amplitudes that exhibit the CKM
structure displayed in Eq. (5):(

T 0
ππ(s)

T 0
KK(s)

)
= Ω(0)(s)

(
λd T

CC
ππ − λb T

P
ππ

λs T
CC
KK − λb T

P
KK

)

≡

(
Aπ

0 + iBπ0
AK

0 + iBK0

)
. (32)
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The uncoupled I = 1 and 2 amplitudes can also be
written in a similar (simpler) way. The CP-even strong
phases are generated by the rescattering matrices Ω(I),
while the CP-odd weak phases originate in the CKM
factors λq appearing in the bare amplitudes, which
are different for charged-current (TCCππ,KK) and penguin

(TPππ,KK) operators. We have decomposed the full de-

cay amplitudes into their CP-even (AI) and CP-odd
(BI) components. Obviously, the AI amplitudes depend
on the parameters Re{λq}, while BI are governed by
Im{λq}. Despite the different sizes of their corresponding
Wilson coefficients, TCCππ,KK ∼ TPππ,KK due to the large
pre-factors coming with Q6 insertions, see App. E.
Observable effects must be stated in terms of

rephasing-invariant quantities. Other than the quartets

Qαiβj ≡ VαiVβjV
∗
αjV

∗
βi , (33)

rephasing-invariant objects also include the moduli of the
elements of the CKM matrix; for a review, see Ref. [97].
The relevant rephasing-invariant quantities have the fol-
lowing numerical values:

Qudcb = −A2λ6(ρ+ iη) +O(λ8)

≃ −(1.3 + i 3.1)× 10−5 , (34)

Qudcs = −λ2 + λ4 +A2λ6(1− ρ+ iη) +O(λ8)

≃ −0.048 + i 3.1× 10−5 ,

Quscb = A2λ6(ρ+ iη) +O(λ8) ≃ (1.3 + i 3.1)× 10−5 ,

and

|λd|2 = λ2 +O(λ4) ≃ 0.051 , (35)

|λs|2 = λ2 +O(λ4) ≃ 0.051 ,

|λb|2 = A4λ10(ρ2 + η2) +O(λ12) ≃ 2.3× 10−8 .

Note that λd and λs cannot be chosen simultaneously
real, since the quartets Qαiβj are rephasing-invariant
and Qudcs = VudVcsV

∗
usV

∗
cd = λdλ

∗
s. This is particularly

important in the presence of rescattering effects, under
which the isoscalar amplitudes depend on both, λd and
λs. (Numerical values of Re{λq} and Im{λq}, q = d, s, b,
in the usual convention for the CKM matrix elements are
found in App. A.)

Thus, the rescattering of the final pseudoscalar mesons
generates a pure I = 0 contribution to the CP asym-
metries, originating in the interference of the intermedi-
ate ππ and KK contributions. Written in a rephasing-
invariant way, the full contribution of isospin-zero–only
amplitudes to the numerator of the direct CP asymme-
tries is given by

num (AiCP )I=0 = 4ω
(Im)
i J

(
TCCππ TCCKK (36)

+TCCππ TPKK + TPππ T
CC
KK

)
.

This contribution is governed by the Jarlskog param-
eter J = Im{Qudcs} = rCKM |λd|2, where rCKM ≡
Im{λb/λd}, and the dynamical rescattering factors

ω
(Im)
i ≡ Im{Ω(0)∗

i1 Ω
(0)
i2 } . (37)

The quantity ω
(Im)
π ≡ ω

(Im)
1 (ω

(Im)
K ≡ ω

(Im)
2 ) controls

the amount of CP violation in D0 → ππ (respectively,
D0 → KK) coming exclusively from the interference of
isospin-zero contributions. The possibility of having a
source of CP violation coming exclusively from isospin-
zero amplitudes has been pointed out by, e.g., Ref. [29].
Such a case is not possible in kaon decays, since the dy-
namics therein is elastic.

The source of CP violation coming from current-
current operators, due to the non-unitarity of the 2 × 2
CKM sub-matrix, and the suppression of contributions
from penguin operators due to small Wilson coefficients,
have often been pointed out in the literature, see e.g.
Refs. [52, 98]. Note, however, that in Ref. [43] the quan-
tity analogous to TPππ,KK generates the needed CP-odd
amplitude, in a mechanism in which the operators Q5,6

couple D0 to f0(1710), that subsequently decays to pion
and kaon pairs. The state f0(1710) being close to be
on-shell, it can produce some enhancement of the ampli-
tudes, and (part of) the strong phases come from the ab-
sorptive part of the f0(1710) lineshape; see also Ref. [44].
We note that the imprints of resonances should manifest
in the phase-shifts and inelasticity that are the inputs of
the DRs discussed previously.

The full contribution of isospin-zero–only amplitudes
to the denominator of the CP asymmetries is lengthy.
Keeping only the terms in |λd|2, |λs|2, and Re{Qudcs},
i.e., neglecting |λb|2, Re{Qudcb}, and Re{Quscb} (or, al-
ternatively, neglecting contributions from penguin oper-
ators), we have:

den (AiCP )I=0 = 2
(
|λd|2|Ω(0)

i1 |2(TCCππ )2 (38)

+|λs|2|Ω(0)
i2 |2(TCCKK)2 + 2Re{Qudcs}ω(Re)

i TCCππ T
CC
KK

)
≈ 2|λd|2

(
|Ω(0)
i1 |2(TCCππ )2 + |Ω(0)

i2 |2(TCCKK)2

−2ω
(Re)
i TCCππ T

CC
KK

)
,

where ω
(Re)
i ≡ Re{Ω(0)∗

i1 Ω
(0)
i2 }; in what will follow,

ω
(Re)
1 ≡ ω

(Re)
π and ω

(Re)
2 ≡ ω

(Re)
K . Numerically,

J/|λd|2 = rCKM ≃ 6.2× 10−4 , (39)

so the numerator is typically much smaller than the de-
nominator.

The previous exercise can be easily extended to isospin-
two (ππ) and isospin-one (KK) contributions, which we
assume to be elastic. Although these are single-channel
amplitudes, they can also lead to contributions to the
CP asymmetries when interfering with the corresponding
isospin-zero contributions. Adopting the parameteriza-
tion Ω(1,2) = |Ω(1,2)| eiϕ1,2 (these quantities will later be
extracted from branching ratios), one derives similar ex-
pressions in terms of rephasing-invariant quantities. The

combinations analogous to ω
(Im)
i above are now:

ω̃
(Im)
πi

|Ω(2)|
≡ Im{Ω(0)

1i e
−iϕ2} , (40)
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ω̃
(Im)
K

|Ω(1)|
≡ Im{Ω(0)∗

21 eiϕ1} , (41)

where ϕ2 (ϕ1) is the strong phase developed by the
isospin-two (respectively, isospin-one) amplitude. Ap-
pearing in the branching ratios, we have the following
extra quantities:

ω̃
(Re)
πi

|Ω(2)|
≡ Re{Ω(0)

1i e
−iϕ2} , (42)

ω̃
(Re)
Ki

|Ω(1)|
≡ Re{Ω(0)∗

2i eiϕ1} . (43)

B. Rescattering parameters

Following the previous discussion, we have the follow-
ing 17 parameters describing rescattering effects:

ω(Im)
π , ω

(Im)
K , ω̃

(Im)
π1 , ω̃

(Im)
π2 , ω̃

(Im)
K , (44)

ω̃
(Re)
π1 , ω̃

(Re)
π2 , ω̃

(Re)
K1 , ω̃

(Re)
K2 ,

|Ω(0)
11 |2 , |Ω

(0)
12 |2 , |Ω

(0)
21 |2 , |Ω

(0)
22 |2 ,

ω(Re)
π , ω

(Re)
K , |Ω(1)| , |Ω(2)| ,

which are functions of the 12 parameters Re {Ω(0)
ij },

Im {Ω(0)
ij }, |Ω(1,2)|, ϕ1,2, i, j = 1, 2. The parameters |Ω(1)|

and |Ω(2)| can be directly extracted from the branching
ratios D+ → KSK

+ and D+ → π0π+, respectively. This
results in:9

|Ω(1)| = 0.79 , |Ω(2)| = 0.90 . (45)

There are further four branching ratios of D0 decays,

that depend linearly on 10 parameters, namely, |Ω(0)
11 |2,

|Ω(0)
12 |2, |Ω

(0)
21 |2, |Ω

(0)
22 |2, ω̃

(Re)
π1 , ω̃

(Re)
π2 , ω̃

(Re)
K1 , ω̃

(Re)
K2 , ω

(Re)
π ,

ω
(Re)
K (that depend on the 10 quantities Re {Ω(0)

ij },
Im {Ω(0)

ij } and ϕ1,2). Therefore, by using only the branch-
ing ratios, the set of these parameters remains under-
constrained.

However, the numerators of the CP asymmetries only

depend on the 5 remaining parameters, namely, ω
(Im)
π ,

ω
(Im)
K , ω̃

(Im)
π1 , ω̃

(Im)
π2 , ω̃

(Im)
K . Fixing the denominators

of the CP asymmetries, which are proportional to the
branching ratios, to their experimental values we have
then that the four CP asymmetries of the D0 →
π−π+, π0π0,K−K+,KSKS modes depend linearly on 5
parameters. Using the measurements by LHCb [2, 3]
is not enough then to determine ranges for the remain-
ing two CP asymmetries in the final modes containing

9 Hereafter, the Wilson coefficients and quark masses are taken at
2 GeV.

neutral pions and kaons. In a companion paper [93], we
discuss how the use of the determinant of the Omnès ma-
trix, which has the great advantage of being independent
of the inelasticity, helps in setting ranges for the rescat-
tering parameters controlling the level of CP asymmetry.
Moreover, as discussed therein, the use of Eq. (11) leads
to an additional relation, namely

Im{Ω(0)†(s) ΣΩ(0)(s)} = 0 ⇒ σπ ω
(Im)
π + σK ω

(Im)
K = 0

(46)

that implies that ω
(Im)
π and ω

(Im)
K have opposite signs,

and similar absolute values, thus reducing the number of
parameters controlling the CP asymmetries to 4.
The dependence of the CP asymmetries on the rescat-

tering parameters is illustrated in the previous to the
last column of Tab. II. Note that the interference terms
I=0/I=2, I=2/I=2, I=0/I=1, and I=1/I=1 are sources of
difference among pion and kaon channels independently
of the rescattering parameters. On the other hand, the
interference terms I=0/I=0 for pions and kaons have the
same pre-factors, see Eqs. (36) and (38), and the dif-
ference comes from the rescattering parameters, namely,

|ω(Im)
π | ̸= |ω(Im)

K |, |Ω(0)
11 |2 ̸= |Ω(0)

21 |2, |Ω(0)
12 |2 ̸= |Ω(0)

22 |2,
|ω(Re)
π | ≠ |ω(Re)

K |.
In the following section, except for |Ω(1)| and |Ω(2)|, for

which we consider Eq. (45), the remaining rescattering
parameters in Eq. (44) are extracted from the use of DRs.

C. Results based on DRs

Before discussing predictions for CP asymmetries, we
need to ensure that branching ratios can be correctly re-
produced. Rescattering effects in isospin-zero are given
in Tab. I for various situations.10 We find that Omnès
solutions resulting from sols. II and III, and sols. B’ and
C’ do not lead to branching ratios of charm-meson de-
cays in agreement with their experimental values, simul-
taneously for all four D0 → π−π+, π0π0, K−K+, and
KSKS transitions. However, we highlight that a set of
solutions is found satisfying the latter constraint, result-
ing from sol. I for the phase-shift δ00 and inelasticity, and
given in the first column of Tab. I. As previously stated,

10 For illustrative purposes only, the procedure of Refs. [28, 99]

leads to (S
1/2
S = ±OσD1/2 OT if SS = ODOT , where O is

an orthogonal matrix, D is a diagonal matrix, and σ is another
diagonal matrix with ±1 elements):

S
1/2
S (M2

D) = ±
(
0.68 e−0.61 i 0.74 e+1.05 i

0.74 e+1.05 i 0.68 e−0.44 i

)
, (47)

or S
1/2
S (M2

D) = ±
(
0.74 e−2.02 i 0.67 e+2.62 i

0.67 e+2.62 i 0.74 e−2.17 i

)
when using the same inputs used to generate the reference solu-
tion.
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ACP (π
−π+);

interference expression
final

ACP (π
0π0) numerics

I=0/I=0 0.0019× ω
(Im)
π 0.00027

numerator
I=0/I=2

0.00041× ω̃
(Im)
π2 + 0.00026× ω̃

(Im)
π1 ; -0.00009;

−0.00081× ω̃
(Im)
π2 − 0.00052× ω̃

(Im)
π1 0.00018

I=0/I=0 |Ω(0)
11 |2 + 0.57× |Ω(0)

12 |2 − 1.51× ω
(Re)
π 1.11

denominator I=0/I=2
0.64× ω̃

(Re)
π1 − 0.49× ω̃

(Re)
π2 ; 0.03;

−1.28× ω̃
(Re)
π1 + 0.97× ω̃

(Re)
π2 -0.07

I=2/I=2 |Ω(2)|2 × 0.10; |Ω(2)|2 × 0.41 0.08; 0.33

ACP (K
−K+);

interference expression
final

ACP (KSKS) numerics

I=0/I=0 0.0019× ω
(Im)
K -0.00032

numerator
I=0/I=1

0.0019× ω̃
(Im)
K ; -0.00019;

−0.0019× ω̃
(Im)
K 0.00019

denominator

I=0/I=0 |Ω(0)
21 |2 + 0.57× |Ω(0)

22 |2 − 1.51× ω
(Re)
K 1.05

I=0/I=1
1.15× ω̃

(Re)
K2 − 1.51× ω̃

(Re)
K1 ; 1.23;

−1.15× ω̃
(Re)
K2 + 1.51× ω̃

(Re)
K1 -1.23

I=1/I=1 |Ω(1)|2 × 0.57 0.36

TABLE II: Budget of contributions to the CP asymmetries. The column “final numerics” corresponds to the values
found at Eq. (48). When two values are provided, the first corresponds to the charged channels (D0 → π−π+ and
D0 → K−K+), while the second to the neutral ones (D0 → π0π0 and D0 → KSKS). For the CP asymmetries of

each channel, divide the sum of the corresponding ‘numerator’ terms by the sum of the ‘denominator’ ones.

B(D0→π−π+)theo;CV
B(D0→π−π+)exp;CV

1.1

B(D0→π0π0)theo;CV
B(D0→π0π0)exp;CV

1.1

B(D+→π0π+)theo;CV
B(D+→π0π+)exp;CV

fixed to 1

ACP (D
0 → π−π+)× 104 2; 3

ACP (D
0 → π0π0)× 104 3; 0.5

ACP (D
+ → π0π+) 0

|Aπ
2 | × 106 0.5× |Ω(2)|

|Aπ
0 | × 106 1.2

|Bπ2 |/rCKM × 106 0.5× |Ω(2)|

|Bπ0 |/rCKM × 106 0.8

arg(Aπ
0 ) 93o

arg(Bπ0 ) −72o

B(D0→K−K+)theo;CV
B(D0→K−K+)exp;CV

1.1

B(D0→KSKS)theo;CV
B(D0→KSKS)exp;CV

1.1

B(D+→KSK
+)theo;CV

B(D+→KSK
+)exp;CV

fixed to 1

ACP (D
0 → K−K+)× 104 −2

ACP (D
0 → KSKS)× 104 −7

ACP (D
+ → KSK

+) 0

|AK
11| × 106 0.8× |Ω(1)|

|AK
0 | × 106 1.1

|BK11|/rCKM × 106 0.3× |Ω(1)|

|BK0 |/rCKM × 106 0.9

arg(AK
0 ) −66o

arg(BK0 ) 95o

|AK
13|, |BK13| sub-leading 1

NC

TABLE III: Predictions based on the reference solution of Tab. I. The notation A (B) designates CP-even
(respectively, CP-odd) amplitudes; “CV” stands for central value. When two numerical values are provided, the first

corresponds to ϕ2 ≃ 0, while the second to ϕ2 ≃ ±π.

the profile of the inelasticity carries a large uncertainty,
and solutions leading to the correct branching ratios are
found when varying the inelasticity inside its error bar
towards smaller values (i.e., away from the elastic limit),
referred to as η00 − δη00 . We display in Tab. I three such

solutions, that differ in the way the asymptotic value of
the inelasticity is approached, corresponding to different
values of m∗

η. In what follows, the reference case refers
to m∗

η = 2, although anyways m∗
η = 1 or m∗

η = 3 lead to
similar Omnès solutions.
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Having selected the Omnès solutions based on the
branching ratios, we then predict the CP asymmetries.
In Tab. II we give numerical details about the predictions
of CP asymmetries in charm-meson decays. Observables
are illustrated in Fig. 4. Two cases of the phase-shift
ϕ2 for isospin-two lead to the correct branching ratios si-
multaneously for π0π0 and π−π+, namely, ϕ2 ≃ ±π, and
ϕ2 ≃ 0, which is closer to Ref. [83] and should therefore
be preferred. In the reference case of Tab. I:

ω(Im)
π = 0.15 , ω̃

(Im)
π1 = 0.53 , ω̃

(Im)
π2 = −0.57 ,

ω
(Im)
K = −0.17 , ω̃

(Im)
K = −0.1 ,

|Ω(0)
11 |2 = 0.34 , |Ω(0)

12 |2 = 0.42 , ω(Re)
π = −0.35 ,

|Ω(0)
21 |2 = 0.35 , |Ω(0)

22 |2 = 0.38 , ω
(Re)
K = −0.32 ,

ω̃
(Re)
π1 = −0.07 , ω̃

(Re)
π2 = −0.16 ,

ω̃
(Re)
K1 = −0.45 , ω̃

(Re)
K2 = 0.47 . (48)

These values correspond to ϕ2 ≃ 0, ϕ1 = 2.0. For

ϕ2 = ±π, ω̃(Im)
π1 , ω̃

(Im)
π2 , ω̃

(Re)
π1 , ω̃

(Re)
π2 flip signs with respect

to ϕ2 = 0.
In both cases of ϕ2, the main contribution to the CP

asymmetry D0 → π−π+ (D0 → K−K+) comes from
the interference term I=0/I=0 (as well, I=0/I=0), fol-
lowed closely by I=0/I=2 (respectively, I=0/I=1). For
the I=0/I=2 contribution, we observe a cancellation due

to the fact that ω̃
(Im)
π1 and ω̃

(Im)
π2 carry opposite signs. We

obtain that the predicted values of the CP asymmetries
are too small in the charged decay modes to reproduce
the measured value of ∆Adir

CP [2]. In the case of ϕ2 ≃ 0,
the two interference terms I=0/I=2 and I=0/I=0 con-
tributing to ACP (D

0 → π−π+) largely cancel, but they
add up in the case ϕ2 ≃ ±π. However, were there no
cancellations (i.e., by artificially reversing signs to ob-
tain a constructive pattern), the level of CP violation
would remain small compared to the experimental mea-
surement by LHCb. The value of the CP asymmetry for
D0 → KSKS is potentially large, at the price of a small
branching ratio, see App. A.

As previously noticed, rescattering parameters are a
source of breaking of a potential symmetry relating

charm-meson decays into pion and kaon pairs: |ω(Im)
π | ̸=

|ω(Im)
K | at the level of 20%, and |Ω(0)

12 |2 ̸= |Ω(0)
22 |2 and

|ω(Re)
π | ̸= |ω(Re)

K | at the level of 10%, while |Ω(0)
11 |2 ≃

|Ω(0)
21 |2. This breaking between isospin-zero amplitudes

should be compared to the level of SU(3)F breaking
found in decay constants and form factors, at the level of
20%, see App. A.

Further numerical information is provided in Tab. III.
Note that rescattering effects lead to different strong
phases for the isospin-zero amplitudes Aπ

0 with respect

to Bπ0 , and also AK
0 with respect to BK0 . When Ω

(0)
12 = 0,

tan (argAπ
0 ) = Im[Ω

(0)
11 ]/Re[Ω

(0)
11 ] = tan (argBπ0 ) . (49)

Also, when Ω
(0)
21 = 0,

tan (argAK
0 ) = Im[Ω

(0)
22 ]/Re[Ω

(0)
22 ] = tan (argBK0 ) . (50)

Having instead Ω
(0)
12 ̸= 0 and/or Ω

(0)
21 ̸= 0 allows then for

contributions to the CP asymmetries coming from the
interference term I=0/I=0.

The numerical conclusions made above do not depend
significantly on the scale used for the Wilson coefficients
and quark masses, which has been taken at 2 GeV in
Eq. (45) and Tabs. II and III.

We stress that the work of a companion paper circum-
vents the need to discuss the input for the inelasticity
[93], which carries a large uncertainty, and one achieves
bounds on the CP asymmetries rather than predictions
as above.

V. CONCLUSIONS

CP violation has been recently established in the
charm sector, and its prediction based on the SM repre-
sents an outstanding problem due to the presence of non-
perturbative QCD effects. In charm physics, the mecha-
nism of CP violation is expected to be largely influenced
by such long-distance effects, while short-distance pen-
guin contributions are expected to play a less important
role. It is essential then to include rescattering effects in
order to build an SM prediction of the recently measured
CP asymmetries.

We have discussed a data-driven approach, which is
based on the use of dispersion relations to take into ac-
count rescattering in the isospin-zero mode, with the
subtraction constants being given by large NC . Only
pion and kaon pairs are included in the analysis, and
further inelasticities are omitted. Given the large un-
certainties attached to the pion-kaon inelasticity, we use
D0 → π−π+, π0π0,K−K+,KSKS branching ratios to
limit this source of hadronic uncertainties. We have
also employed the charged decay modes D+ → KSK

+

and D+ → π0π+ to extract rescattering quantities for
isospin-one and -two, respectively. There are four non-
perturbative quantities controlling the CP asymmetries,
that are determined by the dispersion relations (a com-
panion paper discusses bounds on these quantities). Our
main result is that CP asymmetries in the D0 → π−π+

and D0 → K−K+ decay modes are too small compared
to the experimental value [2]. The main reason for this
is not an accidental cancellation among contributions,
but rather that rescattering effects turn out not produc-
ing enough enhancement. We also find that the level of
SU(3)F breaking due to rescattering effects in isospin-
zero amplitudes is similar to the one of decay constants
and form factors.

In the future, we also plan to address further inelastic-
ities. Their effect might be expected not to be too large
though: in the cases of ρ pairs and a1(1260)π, whose
thresholds take place respectively at ∼ 1.54 GeV and
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FIG. 4: Physical predictions for the reference case of Tab. I. Charged modes are shown in solid blue, while neutral
ones are shown in dashed orange. Left (right) panels correspond to pion (kaon) modes. The top panels show the

ratio of the theoretical and experimental D0 → P−P+ branching ratios, as function of the relevant ϕi phases, while
the lower panels display the corresponding CP asymmetries.

∼ 1.23 GeV, there is a phase-space suppression. Decay
modes with η(

′) are expected to give small contributions.
In any case, if such effects are important this means that
a similar level of CP violation already found experimen-
tally in D0 → π−π+,K−K+ should also be found in
other charm-meson decay channels.
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Miguel Albaladejo, Véronique Bernard, Joachim Brod,
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Appendix A: Numerical inputs

The Wilson coefficients C1, . . . , C6 are given in
Tab. IV, based in Ref. [59], at NLO in the naive dimen-
sional regularization (NDR) scheme; one observes at this
order a strong scheme dependence (NDR vs. the ‘t Hooft-
Veltman scheme), see Ref. [58].

The following values of the form factors and decay
constants, obtained from lattice simulations with Nf =
2+1+1 active quark flavours, are taken from Ref. [102],
see also references therein:

fK
fπ

= 1.1934± 0.0019 , (A1)

fK = (0.1557± 0.0003) GeV ,

fD = (0.2120± 0.0007) GeV ,

fDπ0 (0) = 0.612± 0.035 ,

fDK0 (0) = 0.7385± 0.0044 .

We consider the following single-pole corrections to the



16

µ C1 C2 C3 C4 C5 C6

mc 1.22 −0.40 0.021 −0.055 0.0088 −0.060

2 GeV 1.18 −0.32 0.011 −0.031 0.0068 −0.032

µ mu md m̂ ≡ (mu +md)/2 ms mc

mc 2.50± 0.09 5.48± 0.06 4.00± 0.06 109.0± 0.7 1280± 13

2 GeV 2.14± 0.08 4.70± 0.05 3.427± 0.051 93.46± 0.58 1097± 11

TABLE IV: In the upper panel, the Wilson coefficients at NLO in the NDR scheme, with four dynamical flavours,
see [59] and references therein; αs(MZ) = 0.1179 (we employ its expression at NLO), µb = mb, with mb = 4.18 GeV,
and MW = 80.4 GeV, MZ = 91.1876 GeV, mt = 163.3 GeV. The bottom panel gives the MS quark masses in MeV
at Nf = 2 + 1 + 1, see [102] and references therein; the running factor 0.857 for mc to 2 GeV has been employed.

form factors [48], which amount to a tiny correction

fDπ0 (M2
π) =

fDπ0 (0)

1− M2
π

M2
D∗

0
(2300)

, (A2)

fDK0 (M2
K) =

fDK0 (0)

1− M2
K

M2
D∗
s0
.(2317)±

. (A3)

For the meson masses we adopt the values: Mπ =
139.57 MeV, MK = 496 MeV, MD = 1864.84 MeV,
MD∗

0
(2300) = (2343 ± 10) MeV, MD∗

s0
(2317)± =

(2317.8 ± 0.5) MeV; D0,± lifetimes are τD± = 1.033 ps,
and τD0 = 0.4103 ps [90].

The entries of the CKM matrix are taken from the
CKMfitter Spring ‘21 [103, 104] values of the Wolfenstein
parameters:

A = 0.8132 , λ = 0.22500 , (A4)

ρ̄ = 0.1566 , η̄ = 0.3475 ,

Re{λd} = −0.22 , Im{λd} = 1.3× 10−4 ,

Re{λs} = 0.22 , Im{λs} = 6.9× 10−6 ,

Re{λb} = 6.1× 10−5 , Im{λb} = −1.4× 10−4 .

The relevant branching ratios have the following nu-
merical values [105]:

B(K−π+) = (3.999± 0.006± 0.031± 0.032)% ,

B(π−π+) = (0.1490± 0.0012± 0.0015± 0.0019)% ,

B(K−K+) = (0.4113± 0.0017± 0.0041± 0.0025)% ,

(A5)

with a correlation matrix

corr(B(K−π+),B(π−π+),B(K−K+))

=

1.00 0.77 0.76

0.77 1.00 0.58

0.76 0.58 1.00

 , (A6)

and [90]

B(D0 → π0π0) = (0.826± 0.025)× 10−3 , (A7)

B(D0 → KSKS) = (0.141± 0.005)× 10−3 ,

B(D+ → π0π+) = (1.247± 0.033)× 10−3 ,

B(D+ → KSK
+) = (3.04± 0.09)× 10−3 ,

B(D+ → KLK
+) = (3.21± 0.11± 0.11)× 10−3 .

In addition to the recent measurements in Eqs. (1) and
(3), experimental values have been determined for the
following CP asymmetries (combining direct and indirect
CP violation in the case of D0 decays) [105]:

ACP (D
0 → π0π0) = (−0.03± 0.64)% , (A8)

ACP (D
0 → KSKS) = (−1.9± 1.0)% ,

ACP (D
+ → KSK

+) = (−0.11± 0.25)% ,

ACP (D
+ → (K0/K

0
)K+) = (+0.01± 0.07)% ,

and [90]:

ACP (D
+ → KLK

+) = (−4.2± 3.2± 1.2)% . (A9)

The inputs for phase-shifts and inelasticity have been
discussed in Sec. IIIA.

Appendix B: Numerical solution of the DRs

1. Numerical method

We comment on the numerical method used to solve
the DRs, which is based on the Legendre-Gauss quadra-
ture [87, 106] (an iteration strategy is followed by
Refs. [61, 96]). Consider the following homogeneous
problem:

R(s) =
1

π
−
∫ ∞

4M2

ds′
1

s′ − s
X(s′)R(s′) , (B1)

X(s′) = tan δ(s′) , R(s) = Re (F (s)) .

We start by writing two basic properties of Legendre
functions (in the interval −1 < z < 1, Qj(z) is real;
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we take it real also outside this interval):11

−
∫ 1

−1

du
Pj(u)

u− z
= −2Qj(z) , (B2)∫ 1

−1

duPm(u)Pn(u) = δmn
2

2m+ 1
.

We exploit this relation to write:

−
∫ 1

−1

du′
1

u′ − u
Y (u′) (B3)

≈ −
N−1∑
j=0

(2j + 1)Qj(u)

∫ 1

−1

du′ Pj(u
′)Y (u′)

≈ −
N−1∑
j=0

(2j + 1)Qj(u)

×

[
M∑
i=1

wiPj(ui)Y (ui) +RM (PjY )

]
,

where in the first line we exploit the relation among Leg-
endre polynomials of first and second degrees, and in the
second line we execute a Gaussian quadrature, where the
expressions for remainders in Gauss’s formulas of quadra-
ture integration are found in Ref. [107] (Chapter 25.4):

RM (f) =
2(2M+1)(M !)4

(2M + 1)[(2M)!]3
d(2M)f(x)

dx(2M)

∣∣∣
x=ξ

(−1 < ξ < 1) . (B4)

Therefore, if the remainder RM (f) is sufficiently small,

−
∫ b

a

ds′
1

s′ − sk
X(s′)R(s′) (B5)

≈
M∑
i=1

Ŵi

[
1 +

2(sk − b)

b− a

]
X(si)R(si) ,

si =
a+ b+ (b− a)ui

2
,

−
∫ ∞

a

ds′
1

s′ − sk
X(s′)R(s′) (B6)

≈
M∑
i=1

Ŵi

[
1− 2a

sk

]
si
sk
X(si)R(si) ,

si =
2a

1− ui
,

Ŵi[z] = −wi
N−1∑
j=0

(2j + 1)Pj(ui)Qj(z) , (B7)

11 There was an unexpected difficulty, seemingly undocumented,
when using Python 3.0 built-in functions lqn and lqmn, which do
not return correct values for Qj(u) for large negative u and/or
for u ≳ −1.

wi =
2

1− u2i

[
dPM
du

(ui)

]−2

.

In our case, we have subtractions and the system is
inhomogeneous. For n > 0 subtractions, choosing s0 on
the real axis below the cut s ≥ 4M2,

R(s) =

n−1∑
k=0

(s− s0)
k

k!
R(k)(s0) (B8)

+
(s− s0)

n

π
−
∫ ∞

4M2

ds′
1

s′ − s
X(s′)

R(s′)

(s′ − s0)n
,

with R(k) the kth derivative, for which a similar discus-
sion holds.
Ref. [87] chooses M = N , which typically we take to

be ≈ 30− 40. Note that the method above leads to more
sampling points close to the endpoints of the integration
intervals. In the elastic region, the values of δ for which
X diverges are then used as endpoints. In the inelas-
tic region, the function appearing in the denominator of
R−1 in Eq. (22) has zeros, and the intervals of the nu-
merical integration are chosen accordingly. The typical
total number of integration intervals is ≈ 20.

2. Dealing with the polynomial ambiguity

According to Ref. [7], there are n so-called fundamen-
tal functions χ(i)(s), i = 1, . . . , n, of lowest finite degree
in the n-channel coupled analysis. These solutions can-
not be written as a polynomial times another solution.
Their combination with polynomial coefficients is also a
solution. The most general solution (having finite degree
at infinity) is then:

n∑
i=1

Pi(s)χ
(i)(s) , (B9)

where Pi(s) are polynomials of s, and the dimension of
χ(i) is n. For instance, in the two-channel coupled anal-
ysis, χ(i) are vectors of dimension two.

Following the discussions of Sec. III and App. B 1,
we generate the fundamental solutions in the latter two-
channel coupled case numerically, satisfying the following
condition at the subtraction point s0 < 4M2:(

χ(1)(s0) ⊗ χ(2)(s0)
)

= Ω(0)(s0)

=
(
N (1)(s0) ⊗ N (2)(s0)

)
. (B10)

The numerical solutions N (i)(s) are polynomials of de-
gree one times the fundamental solutions χ(i)(s), as it
turns out that we find numerical solutions going asymp-
totically to non-vanishing constants, and that the indices
x1 = x2 = −1, see Sec. III B. To get rid of the unknown
polynomials, we also require that another condition is
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satisfied at a different point s1 (in practice, s1 < s0):(
N (1)(s1) ⊗ N (2)(s1)

)
=

(
a1 a3
a2 a4

)
. (B11)

The values of a1,2,3,4, which are real, are then adjusted in

order to build the matrix
(
χ(1)(s) ⊗ χ(2)(s)

)
that satis-

fies the condition valid for the determinant, Eq. (26), for
which an explicit analytical expression is known. This
procedure then leads to the sought system of fundamen-
tal solutions χ(i). They are given at M2

D for various sets
of inputs in Tab. I. The system of fundamental solutions
is shown for the reference solution in Fig. 5. (As a cross-
check, with the inputs used in [108, 109], we have repro-
duced their Omnès solution.)

We reproduce from Ref. [7] the following properties
of fundamental solutions that are used as checks of the
previous algorithm:

PROPERTY 1o: The determinant

∆(z) = det ||χ(β)
α (z)|| (α, β = 1, . . . , n) (B12)

does not vanish anywhere in the finite part of the plane.

PROPERTY 2o: Let xβ be the degree of the solution

χ(β)(z) at infinity; if one defines

χ(β),0(z) = z−xβχ(β)(z) (β = 1, 2, . . . , n), (B13)

then the determinant

∆0(z) = det ||χ0
α(z)|| (B14)

has a finite non-zero value at infinity.
Crucially, by definition any n solutions of the homo-

geneous Hilbert problem of Eq. (13) (where S satisfies
the Hölder condition ensuring it does not grow too fast
with the energy [7], and its determinant does not van-
ish, see Eq. (26)), possessing properties 1o and 2o, is a
fundamental system of solutions of this problem.

This latter step of getting rid of polynomial ambi-
guities has in practice been executed in Mathematica
[110]. The numerical code implemented in Python to-
gether with a Mathematica notebook containing an ex-
ample will later be released in Zenodo.

Appendix C: Explicit solution of the DRs close to
the elastic regime

It would be certainly important to achieve a full ex-
plicit analytical equation, instead of relying on a numeri-
cal method as described in the previous section, in order
to get a higher understanding of the behaviour of the
Omnès solution given the required phase-shifts and in-
elasticities as inputs. Hereafter, we discuss an explicit an-
alytical expression for the amplitudes of the two-coupled

channel problem valid close to the elastic limit. We write
Eq. (11) as A = SS A

∗. This equation can be used to
solve for the phases of the individual elements Aππ, AKK
of A ≡ (Aππ, AKK)T as a function of the ratio of their
magnitudes:

cos (argAππ(s)− δ1(s)) (C1)

=

√
(1 + η(s))2 − λ−2

πK(s)(1− η(s)2)

4η(s)
,

cos (argAKK(s)− δ2(s)) (C2)

=

√
(1 + η(s))2 − λ2πK(s)(1− η(s)2)

4η(s)

where δ1(s) = δ00(s), δ2(s) = ψ0
0(s)− δ00(s), η(s) = η00(s)

in the isospin-zero case, and

λπK(s) ≡ |Aππ(s)|
|AKK(s)|

. (C3)

Exploiting the general once-subtracted relation arising
from analyticity:

|Ai(s)| = |Ai(s0)| (C4)

× exp

{
s− s0
π

−
∫ ∞

4M2
π

dz
argAi(z)

(z − s)(z − s0)

}
,

i = ππ,KK

where Ai(s0) collects the zeros of Ai(s), one obtains that
the ratio of the magnitudes follows:

λπK(s) = λπK(0) (C5)

× exp

{
s

π
−
∫ ∞

4M2
π

dz
δ1(z)−Θ(z − 4M2

K)δ2(z)

z(z − s)

}

× exp

{
s

π
−
∫ ∞

4M2
K

dz

z(z − s)

×

arccos

√
(1 + η(z))2 − λ−2

πK(z)(1− η(z)2)

4η(z)

− arccos

√
(1 + η(z))2 − λ2πK(z)(1− η(z)2)

4η(z)

)}

for one subtraction taken at s0 = 0.
Solving the latter equation is obviously a highly non-

trivial task. However, close to the elastic limit η(s) ∼
1 for all relevant values of the energy s, we obtain the
following approximation:

λ−1
πK(s)− λπK(s) ≃ ϕel(s) +

s

π
gel(s)−

∫ ∞

4M2
K

dz
ϵ(z)ϕel(z)

z(z − s)

(C6)
after expansion in the small quantity ϵ(s)
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FIG. 5: Set of Omnès solutions for the reference case of Tab. I. Real parts are shown in solid blue, while imaginary
parts are shown in dashed red.

ϵ(s) ≡
√

1− η(s)

2
. (C7)

The functions ϕel(s) and gel(s) are known from the per-
fect elastic limit η(s) = 1, they depend then only on the
phase-shifts δ1(s), δ2(s) and are given by:

ϕel(s) ≡ λ−1
πK,el(s)− λπK,el(s) , (C8)

gel(s) ≡ −λ−1
πK,el(s)− λπK,el(s) (C9)

with λπK,el(s) the ratio of the amplitudes in the fully
elastic case, given by the first two lines of Eq. (C5). Hav-
ing an approximation for the ratio λπK(s), the phases of
the individual amplitudes can be substituted in Eq. (C4)
by the use of Eqs. (C1) and (C2), and Aππ, AKK can be
obtained as functions of s. A drawback of this approach
is that the ratio λπK,el(s) may get close to zero, render-
ing ill-defined the procedure described above, being well
behaved for λπK,el(s) ∼ 1. Due to these shortcomings,
we stress that such a method, which illustrates the diffi-
culty in obtaining an explicit analytical solution, has not
been employed in the present work.

Appendix D: Decay constants and form factors

We need the following hadronic matrix elements of the
axial-vector (no sum over i, j is implied),

⟨0|q̄jγµγ5qi|P ij(p)⟩ (D1)

= −⟨P ji(p)|q̄jγµγ5qi|0⟩ = i CijP fP p
µ ,

and vector,

⟨P ′(p′)|q̄jγµqi|P (p)⟩ (D2)

= C̃ijPP ′

[
(p+ p′)µ fPP

′

+ (q2) + (p− p′)µ fPP
′

− (q2)
]
,

QCD currents, where qµ = pµ− p′µ and the superindices
in P ij ∼ qiq̄j indicate the flavour content of the cor-
responding pseudoscalar meson (they are not displayed
explicitly in the vector case where flavour quantum num-
bers can match in different ways).
In the axial-vector matrix element, the normalization

of the decay constant corresponds to fπ =
√
2Fπ =

(130.2± 0.8) MeV [102]. The coefficient CijP reflects the
intrinsic flavour composition of P ij . It is just equal to 1
for flavourful mesons, while for the flavourless states:

C11
π0 = −C22

π0 =
1√
2
, (D3)

C11
η8 = C22

η8 = −1

2
C33
η8 =

1√
6
,

Ciiη0 =
1

2
,

C11
η15 = C22

η15 = C33
η15 = −1

3
C44
η15 =

1√
12
. (D4)

These factors are conveniently captured in the following
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4× 4 matrix of pseudoscalar bosons [111]:

Φ =


π0
√
2
+ η8√

6
+ η15√

12
+ η0

2 π+

π− − π0
√
2
+ η8√

6
+ η15√

12
+ η0

2

K− K
0

D0 D+

K+ D
0

K0 D−

− 2η8√
6
+ η15√

12
+ η0

2 D−
s

D+
s − 3η15√

12
+ η0

2

 , (D5)

which fixes our conventions. Under charge conjugation
Φ → ΦT . In the unphysical limit of vanishing quark
masses, the axial quark current has the effective hadronic
representation q̄jγµγ5q

i=̇ − f ∂µΦij + O(Φ3), while the

vector current is given by q̄jγµq
i=̇−i

(
Φ

↔
∂ µΦ

)ij
+O(Φ4)

[11]. This reproduces the constant factors in Eq. (D4)
and allows one to easily derive the appropriate Clebsch-
Gordon coefficients in Eq. (D2), because the vector-

current matrix element satisfies fPP
′

+ (0) = 1 in the mass-
less quark limit (vector-current conservation). We only
quote here those coefficients needed in our calculation:

C̃41
D+π+ =

√
2 C̃41

D0π0 = C̃42
D0π− (D6)

= −
√
2 C̃42

D+π0 = C̃43
D0K− = C̃43

D+K
0 = 1 .

Since

qµ ⟨P ′(p′)|q̄jγµqi|P (p)⟩ = C̃ijPP ′

(
M2
P −M2

P ′

)
fPP

′

0 (q2) ,
(D7)

the scalar form factor

fPP
′

0 (q2) = fPP
′

+ (q2) +
q2

M2
P −M2

P ′
fPP

′

− (q2) (D8)

plays an important role in the bare decay amplitudes.
For the evaluation of the penguin contribution (Q6),

we also need the scalar and pseudoscalar matrix elements,
which can be easily obtained by applying the QCD equa-
tions of motion:

⟨0|q̄jγ5qi|P ij(p)⟩ = −i ⟨0|∂µ(q̄
jγµγ5q

i)|P ij(p)⟩
mi +mj

(D9)

= −i CijP
fP M

2
P

mi +mj
,

⟨P (p′)|q̄jqi|P (p)⟩ = i
⟨P (p′)|∂µ(q̄jγµqi)|P (p)⟩

mi −mj
(D10)

=
C̃ijP

mi −mj

(
M2
P −M2

P ′

)
fPP

′

0 (q2) .

For equal quark masses the needed two-Goldstone ma-
trix elements of the light-quark scalar currents,

⟨πi|ūu+ d̄d|πj⟩ = δij FπS (t) , (D11)

⟨K+|ūu|K+⟩ = ⟨K+|ūd|K0⟩ = ⟨K0|d̄d|K0⟩ = FKS (t) ,

can be determined at low momentum transfer with χPT
[9, 11]. At O(p4) and keeping only the leading contribu-
tions at large-NC , one gets:

FπS (t) =
M2
π

m̂

{
1 +

16

f2π
(2L8 − L5)M

2
π +

8L5

f2π
t

}
≡ M2

π

m̂
F̃πS (t) , (D12)

FKS (t) =
M2
K

ms + m̂

{
1 +

16

f2K
(2L8 − L5)M

2
K +

8L5

f2K
t

}
≡ M2

K

ms + m̂
F̃KS (t) , (D13)

with m̂ = mu = md. For the chiral low-energy constants
we will adopt the values Lr5(Mρ) = (1.20± 0.10)× 10−3

and 2L8 − L5 = −(0.15± 0.20)× 10−3 [16].

Appendix E: Bare decay amplitudes

The hadronic matrix elements of the four-quark opera-
tors in Eq. (8) are non-perturbative quantities, sensitive
to the involved infrared properties of the strong interac-
tion. However, they can be easily evaluated in the limit
of a large number of QCD colours, because the product of
two colour-singlet quark currents factorizes at the hadron
level into two current matrix elements [15, 112]:

⟨J · J⟩ = ⟨J⟩ ⟨J⟩
{
1 +O

(
1

NC

)}
. (E1)

For instance, when NC → ∞,

⟨π−π+|(d̄c)V−A(ūd)V−A|D0⟩ (E2)

= ⟨π−|(d̄c)V−A|D0⟩ ⟨π+|(ūd)V−A|0⟩
= −⟨π−|d̄γµc|D0⟩ ⟨π+|ūγµγ5d|0⟩
= ifπ

(
M2
D −M2

π

)
fDπ0 (M2

π) ,

while the penguin Q6 operator gives

−2
∑
q

⟨π−π+|(q̄c)S−P (ūq)S+P |D0⟩ (E3)

= 2 ⟨0|ūγ5c|D0⟩ ⟨π−π+|ūu|0⟩
−2 ⟨π−|d̄c|D0⟩ ⟨π+|ūγ5d|0⟩

= −2i
M2
π

2m̂

[
fDM

2
D

mc + m̂
F̃πS (M

2
D)

+
fπ
(
M2
D −M2

π

)
mc − m̂

fDπ0 (M2
π)

]
.

Using the matrix elements of the QCD currents given
in appendix D, one can then determine all bare decay
amplitudes in the large-NC limit:

T
(B)
D0→π−π+ =

GF√
2
fπ
(
M2
D −M2

π

)
fDπ0 (M2

π) (E4)
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× [λd C1 − λb (C4 − C6 δ
π
6 )] ,

T
(B)
D0→π0π0 = −GF√

2
fπ
(
M2
D −M2

π

)
fDπ0 (M2

π)

× [λd C2 + λb (C4 − C6 δ
π
6 )] ,

T
(B)
D+→π0π+ = −GF√

2

fπ√
2

(
M2
D −M2

π

)
fDπ0 (M2

π)

×λd (C1 + C2) ,

T
(B)
D0→K−K+ =

GF√
2
fK
(
M2
D −M2

K

)
fDK0 (M2

K)

×
[
λs C1 − λb (C4 − C6 δ

K
6 )
]
,

T
(B)

D0→K
0
K0

= 0 ,

T
(B)

D+→K
0
K+

=
GF√
2
fK
(
M2
D −M2

K

)
fDK0 (M2

K)

×
[
λs C1 − λb (C4 − C6 δ

K
6 )
]
,

where

δπ6 =
2

mc − m̂

M2
π

2m̂

{
1 (E5)

+
fDM

2
D

fπ(M2
D −M2

π)

mc − m̂

mc + m̂

F̃πS (M
2
D)

fDπ0 (M2
π)

}
,

δK6 =
2

mc −ms

M2
K

ms + m̂

{
1 (E6)

+
fDM

2
D

fK(M2
D −M2

K)

mc −ms

mc + m̂

F̃KS (M2
D)

fDK0 (M2
K)

}
.

The conservation of the vector current guarantees that
annihilation topologies give zero contribution, except for
Q6 which has a scalar-pseudoscalar structure. The ma-
trix elements of Q3 and Q5 are also identically zero at
NC → ∞ because

∑
i q̄iγµγ5qi only couples to isosinglet

states.
The bare decay amplitudes involve the hadronic pa-

rameters fπ, fK , fDπ0 (M2
π) and f

DK
0 (M2

K), which we take
from lattice calculations. These “physical” inputs include
higher-order contributions in the 1/NC expansion, dress-
ing in this way the current matrix elements beyond the
large-NC approximation. These additional corrections
are totally independent of the rescattering dynamics in-
corporated in Ω(I)(s).
A subtlety arises with the annihilation contribution to

the matrix elements of the operator Q6, given for the
π+π− case by the first term in Eq. (E3). This introduces
the parameters FπS (M

2
D) and FKS (M2

D) at NC → ∞,
which are subjected to a large uncertainty. Their physical
values at NC = 3 are fully entangled with the rescatter-
ing dynamics of the final pair of pseudoscalars.12 Us-
ing crossing symmetry, we input the χPT predictions in

12 The calculation of these scalar form factors is interesting on its
own. We defer to a forthcoming publication a detailed analysis
of our predicted form factors and their comparison with previous
calculations.

Eq. (D12) at the subtraction point s0 and let our calcu-
lated rescattering matrix to generate the physical form
factors at s =M2

D.
13

The global quark-mass factors in δπ,K6 introduce an ex-
plicit dependence on the short-distance renormalization
scale that exactly cancels the corresponding dependence
of the Wilson coefficient C6(µ

2), in the large-NC limit.
Q6 is in fact the only four-quark operator with a non-
zero anomalous dimension in the limit NC → ∞ [113].
In order to keep all short-distance logarithmic contribu-
tions, the Wilson coefficients are fully computed at NLO,
without any 1/NC expansion. Therefore, a subleading
dependence on µ remains.

1. Isospin decomposition

Bose symmetry only allows an S-wave 2π state to have
I = 0 and 2. In terms of isospin states |I, I3⟩ the 2π final
states with definite charges are decomposed as:14

|π0π0⟩ =

√
2

3
|2, 0⟩ − 1√

3
|0, 0⟩ ,

1√
2
|π+π− + π−π+⟩ = − 1√

3
|2, 0⟩ −

√
2

3
|0, 0⟩ ,

1√
2
|π+π0 + π0π+⟩ = −|2, 1⟩ . (E7)

Therefore,15

A[D0 → π0π0] = − 1√
6
T 0
ππ +

1√
3
T 2
ππ ,

A[D0 → π−π+] ≡ 1√
2
A[D0 → 1√

2
(π+π− + π−π+)]

= − 1√
6
T 0
ππ − 1

2
√
3
T 2
ππ ,

A[D+ → π0π+] ≡ 1√
2
A[D+ → 1√

2
(π+π0 + π0π+)]

=

√
3

2
√
2
T 2
ππ . (E8)

The KK system can have I = 0 and I = 1:

|K−K+⟩ =
1√
2
|1, 0⟩ − 1√

2
|0, 0⟩ ,

13 Owing to the small value of Re{λb}, the D0 decay branching
ratios are not sensitive to the penguin operators and, therefore,
the scalar form factors do not contaminate the specification of
Ω(0)(s).

14 We adopt the usual isospin convention with quark multi-
plets (u, d) and (−d̄, ū), and meson multiplets (−π+, π0, π−),

(K+,K0), (−K
0
,K−), (D

0
, D−) and (−D+, D0), which is con-

sistent with the matrix realization in Eq. (D5).
15 ⟨If If3 |OII3 |IiIi3⟩ = ⟨II3IiIi3|IIiIf I

f
3 ⟩ ⟨If ||OI ||Ii⟩. The factor

1/
√
2 in front of the π−π+ and π0π+ amplitudes reabsorbs the

phase-space factor for identical particles, so that one recovers
the usual normalization of distinguishable particles adopted in
the dynamical calculations.
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|K0
K0⟩ = − 1√

2
|1, 0⟩ − 1√

2
|0, 0⟩ ,

|K0
K+⟩ = −|1, 1⟩ . (E9)

This implies

A(D0 → K−K+) =
1

2

(
T 11
KK + T 13

KK − T 0
KK

)
,

A(D0 → K
0
K0) =

1

2

(
−T 11

KK − T 13
KK − T 0

KK

)
,

A(D+ → K
0
K+) = T 11

KK − 1

2
T 13
KK . (E10)

Here, T 11
KK and T 13

KK denote the reduced amplitudes
⟨1||O1/2|| 12 ⟩ and ⟨1||O3/2|| 12 ⟩, respectively.

In the large-NC limit, we get from Eq. (E4):

T 0 (B)
ππ = −GF√

2

√
2

3
fπ
(
M2
D −M2

π

)
fDπ0 (M2

π)

× [λd (2C1 − C2)− 3λb (C4 − C6 δ
π
6 )] ,

T 2 (B)
ππ = −GF√

2

2fπ√
3

(
M2
D −M2

π

)
fDπ0 (M2

π)

×λd (C1 + C2) ,

−T 0 (B)
KK = T

11 (B)
KK =

GF√
2
fK
(
M2
D −M2

K

)
fDK0 (M2

K)

×
[
λs C1 − λb (C4 − C6 δ

K
6 )
]
,

T
13 (B)
KK = 0 . (E11)
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cations on the first observation of charm CPV at LHCb.
3 2019. arXiv:1903.10638.

[47] Hai-Yang Cheng and Cheng-Wei Chiang. Revisiting CP
violation in D → PP and VP decays. Phys. Rev. D,
100(9):093002, 2019. arXiv:1909.03063, doi:10.1103/
PhysRevD.100.093002.

[48] Sarah Müller, Ulrich Nierste, and Stefan Schacht. Topo-
logical amplitudes in D decays to two pseudoscalars:
A global analysis with linear SU(3)F breaking. Phys.
Rev. D, 92(1):014004, 2015. arXiv:1503.06759, doi:
10.1103/PhysRevD.92.014004.

[49] Sarah Müller, Ulrich Nierste, and Stefan Schacht. Sum
Rules of Charm CP Asymmetries beyond the SU(3)F
Limit. Phys. Rev. Lett., 115(25):251802, 2015. arXiv:

1506.04121, doi:10.1103/PhysRevLett.115.251802.
[50] Ulrich Nierste and Stefan Schacht. CP Violation in

D0 → KSKS . Phys. Rev. D, 92(5):054036, 2015. arXiv:
1508.00074, doi:10.1103/PhysRevD.92.054036.

[51] Di Wang. Evidence of ACP (D
0 → π+π−) implies ob-

servable CP violation in the D0 → π0π0 decay. Eur.
Phys. J. C, 83:279, 2023. arXiv:2207.11053, doi:

10.1140/epjc/s10052-023-11439-5.
[52] Alexander Khodjamirian and Alexey A. Petrov. Di-

rect CP asymmetry in D → π−π+ and D → K−K+

in QCD-based approach. Phys. Lett. B, 774:235–242,
2017. arXiv:1706.07780, doi:10.1016/j.physletb.

2017.09.070.
[53] Mikael Chala, Alexander Lenz, Aleksey V. Rusov, and

Jakub Scholtz. ∆ACP within the Standard Model and
beyond. JHEP, 07:161, 2019. arXiv:1903.10490, doi:
10.1007/JHEP07(2019)161.

[54] Maxwell T. Hansen and Stephen R. Sharpe. Multiple-
channel generalization of Lellouch-Luscher formula.
Phys. Rev. D, 86:016007, 2012. arXiv:1204.0826, doi:
10.1103/PhysRevD.86.016007.

[55] Yuval Grossman, Alexander L. Kagan, and Jure Zupan.
Testing for new physics in singly Cabibbo suppressed D
decays. Phys. Rev. D, 85:114036, 2012. arXiv:1204.

3557, doi:10.1103/PhysRevD.85.114036.
[56] Avital Dery and Yosef Nir. Implications of the

LHCb discovery of CP violation in charm decays.
JHEP, 12:104, 2019. arXiv:1909.11242, doi:10.1007/
JHEP12(2019)104.

[57] Rigo Bause, Hector Gisbert, Gudrun Hiller, Tim Höhne,
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