

Doubly Charmed Baryon Decays in Quark Models

Fanrong Xu Jinan University, China July 20, 2023

In collab with Hai-Yang Cheng, Peng-Yu Niu, Shuge Zeng

- Introduction
- Model setup
- Non-perturbative parameters in quark models
- Results and discussion

OUTLINE

Towards charmed baryons

- Charm quark is special for its mass implying the theoretical challenge. talk given by K. Vos
- Baryons provide a good platform to study charm physics.

SU(4) 20-plet with an SU(3) decuplet

SU(4) 20-plet with an SU(3) octet

udc

Topics of charmed baryons: lifetimes, masses, decays, CPV...

H.-Y. Cheng, B. Melic, A. Schwartz ...

S. Collins, P. Spradlin, ..

H.-Y. Cheng, P. Sparadlin, Y. Xu... & this talk

Doubly charmed baryon family

• The first observed doubly charmed baryon Ξ_{cc}^{++} : mass and lifetime

 $3621.40 \pm 0.72 (\text{stat.}) \pm 0.27 (\text{syst.}) \pm 0.14 (\Lambda_c^+) \text{ MeV}/c^2$

PHYSICAL REVIEW LETTERS 121, 052002 (2018)

Editors' Suggestion

4

Measurement of the Lifetime of the Doubly Charmed Baryon Ξ_{cc}^{++}

R. Aaij et al.* (LHCb Collaboration)

(Received 7 June 2018; revised manuscript received 24 June 2018; published 31 July 2018)

 $\tau(\Xi_{cc}^{++}) = 0.256^{+0.024}_{-0.022}(\text{stat}) \pm 0.014(\text{syst}) \text{ ps}$

Decays of Ξ_{cc}^{++}

PHYSICAL REVIEW LETTERS 121, 162002 (2018)

First Observation of the Doubly Charmed Baryon Decay $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$

R. Aaij *et al.*^{*} (LHCb Collaboration)

(Received 9 July 2018; revised manuscript received 1 August 2018; published 17 October 2018)

Extracting information of Ξ_{cc}^{++} decays from experimental results

$$R \equiv \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})} = 1.41 \pm 0.17 \pm 0.10$$
 LHCb JHE

$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) \times \mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}) \times \mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} = 0.035 \pm 0.009(\text{stat.}) \pm 0.003$$
$$\frac{\text{LHCb PRL } 121,162002}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+}) = (6.28 \pm 0.32)\%}$$
$$\mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+}) = (0.62 \pm 0.30)\%$$
PDG

• Incomplete list of recent papers on Ξ_{cc}^{++} decays

- W. Wang, Z. P. Xing and J. Xu, "Weak Decays of Doubly Heavy Baryons: SU(3) Analysis," Eur. Phys. J. C 77, 800 (2017) [arXiv:1707.06570 [hep-ph]].
- [2] A. S. Gerasimov and A. V. Luchinsky, "Weak decays of doubly heavy baryons: Decays to a system of π mesons," Phys. Rev. D 100, 073015 (2019) [arXiv:1905.11740 [hep-ph]].
- [3] H. W. Ke, F. Lu, X. H. Liu and X. Q. Li, "Study on Ξ_{cc} → Ξ_c and Ξ_{cc} → Ξ'_c weak decays in the light-front quark model," Eur. Phys. J. C 80, no.2, 140 (2020) [arXiv:1912.01435 [hepph]].
- [4] Y. J. Shi, W. Wang and Z. X. Zhao, "QCD Sum Rules Analysis of Weak Decays of Doubly-Heavy Baryons," Eur. Phys. J. C 80, no.6, 568 (2020) [arXiv:1902.01092 [hep-ph]].
- [5] T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and Z. Tyulemissov, "Ab initio three-loop calculation of the *W*-exchange contribution to nonleptonic decays of double charm baryons," Phys. Rev. D 99, 056013 (2019) [arXiv:1812.09212 [hep-ph]].
- [6] Y. J. Shi, Z. X. Zhao, Y. Xing and U. G. Meißner, "W-exchange contribution to the decays $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{(\prime)+}\pi^{+}$ using light-cone sum rules," Phys. Rev. D **106** (2022) no.3, 034004 [arXiv:2206.13196 [hep-ph]].
- [7] J. J. Han, H. Y. Jiang, W. Liu, Z. J. Xiao and F. S. Yu, "Rescattering mechanism of weak decays of double-charm baryons," Chin. Phys. C 45, no.5, 053105 (2021) [arXiv:2101.12019 [hep-ph]].
- [8] N. Sharma and R. Dhir, "Estimates of W-exchange contributions to Ξ_{cc} decays," Phys. Rev. D 96 (2017) no.11, 113006 [arXiv:1709.08217 [hep-ph]].
- [9] H. W. Ke and X. Q. Li, "Revisiting the transition $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{(\prime)+}$ to understand the data from LHCb," Phys. Rev. D 105 (2022) no.9, 096011 [arXiv:2203.10352 [hep-ph]].

...

doi:10.1103/PhysRevD.107.034009 [arXiv:2212.12983 [hep-ph]].

KINEMATICS

Partial wave amplitudes

$$M(\mathcal{B}_i \to \mathcal{B}_f P) = i \bar{u}_f (A - B\gamma_5) u_i,$$

dynamics

Physical observables

$$\Gamma = \frac{p_c}{8\pi} \left[\frac{(m_i + m_f)^2 - m_P^2}{m_i^2} |A|^2 + \frac{(m_i - m_f)^2 - m_P^2}{m_i^2} \right]$$

$$\alpha = \frac{2\kappa \operatorname{Re}(A^*B)}{|A|^2 + \kappa^2 |B|^2}$$

longitudinal polarization relative size and phase of amplitudes

decay width or branching fraction

absolute size of amplitudes

DYNAMICS: TOPOLOGICAL DIAGRAMS & POLE MODEL

- topological diagram method

 - a tool to assist in analyzing dynamics

non-factorizable factorizable

$$A^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_{1,2} V_{ud}^* V_{cs} f_P(m_{\mathcal{B}_{cc}} - m_{\mathcal{B}_c}) f_1(q^2),$$

$$B^{\text{fac}} = -\frac{G_F}{\sqrt{2}} a_{1,2} V_{ud}^* V_{cs} f_P(m_{\mathcal{B}_{cc}} + m_{\mathcal{B}_c}) g_1(q^2)$$

a tool to manipulate fit (meson case: Chau & Cheng PRL56(1986)1655)

$$\begin{split} A^{\text{pole}} &= -\sum_{B_n^*(1/2^{-})} \left[\frac{g_{B_f B_n^* P} b_{n^* i}}{m_i - m_{n^*}} + \frac{b_{fn^*} g_{B_n^* B_i P}}{m_f - m_{n^*}} \right] \\ B^{\text{pole}} &= \sum_{B_n} \left[\frac{g_{B_f B_n P} a_{ni}}{m_i - m_n} + \frac{a_{fn} g_{B_n B_i P}}{m_f - m_n} \right], \end{split}$$

DETAILED AMPLITUDES

A summary of all amplitudes

factorizable amplitudes

$$A^{\text{fac}} = \frac{G_F}{\sqrt{2}} a_{1,2} V_{ud}^* V_{cs} f_P(m_{\mathcal{B}_{cc}} - m_{\mathcal{B}_c}) f_1(q^2),$$

$$B^{\text{fac}} = -\frac{G_F}{\sqrt{2}} a_{1,2} V_{ud}^* V_{cs} f_P(m_{\mathcal{B}_{cc}} + m_{\mathcal{B}_c}) g_1(q^2),$$

non-factorizable amplitudes

$$A^{nf}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = \frac{1}{f_{cc}}$$
$$A^{nf}(\Xi_{cc}^{++} \to \Xi_{c}^{'+}\pi^{+}) = \frac{1}{f_{cc}}$$
$$B^{nf}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = \frac{1}{f_{cc}}$$
$$B^{nf}(\Xi_{cc}^{++} \to \Xi_{c}^{'+}\pi^{+}) = \frac{1}{f_{cc}}$$

non-perturbative parameters

- Lattice QCD
- QCD sum rule
- Quark Models

MIT BAG MODEL

$$\boldsymbol{\psi} = \begin{pmatrix} i\boldsymbol{u}(\boldsymbol{r})\boldsymbol{\chi} \\ \boldsymbol{v}(\boldsymbol{r})\boldsymbol{\sigma}\cdot\hat{\mathbf{r}}\boldsymbol{\chi} \end{pmatrix}$$

MIT bag model

Baryon wave function:

$$|\mathcal{B}^{\uparrow}
angle = rac{1}{\sqrt{6}}\epsilon^{lphaeta\gamma}\int\chi$$

 $\Psi_{\mathcal{B}(q_1q_2q_3)}(x_1, x_2, x_3) = \psi_{q_1}(x_1)\psi_{q_2}(x_2)\psi_{q_3}(x_3)$

 $\chi_s^{\uparrow} \phi_{\alpha\beta\gamma}^{abc}(x_1, x_2, x_3) \Psi_{\mathcal{B}(q_1q_2q_3)}(x_1, x_2, x_3) [d^3x] |0\rangle$

NON-RELATIVISTIC QUARK MODEL

NR quark model

$$H = \sum_{i=1}^{3} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + \frac{1}{2} K \sum_{i < j} (\mathbf{r}_{i} - \mathbf{r}_{j})^{2}$$

$$H = \frac{\mathbf{p}^{2}}{2M} + \frac{\mathbf{p}_{\lambda}^{2}}{2m_{\rho}} + \frac{\mathbf{p}_{\lambda}^{2}}{2m_{\lambda}} + \frac{1}{2} m_{\rho} \omega_{\rho}^{2} \rho^{2} + \frac{1}{2} m_{\lambda} \omega_{\lambda}^{2} \lambda^{2}$$

$$p = M\dot{\mathbf{k}}_{c} = \mathbf{p}_{1} + \mathbf{p}_{2} + \mathbf{p}_{3},$$

$$p = m_{i}\dot{\mathbf{p}} = \frac{m_{i}\dot{\mathbf{r}}_{1} + m_{2}\mathbf{r}_{2}}{m_{1} + m_{2}} \mathbf{p}_{1} - \frac{m_{1}}{m_{1} + m_{2}}\mathbf{p}_{2},$$

$$p_{\lambda} = \frac{m_{1}\mathbf{r}_{1} + m_{2}\mathbf{r}_{2}}{m_{1} + m_{2}} - \mathbf{r}_{3}.$$

$$\sum_{i=1}^{3} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + \frac{1}{2} K \sum_{i < j} (\mathbf{r}_{i} - \mathbf{r}_{j})^{2}$$

$$H = \frac{\mathbf{p}^{2}}{2M} + \frac{\mathbf{p}_{\rho}^{2}}{2m_{\rho}} + \frac{\mathbf{p}_{\lambda}^{2}}{2m_{\lambda}} + \frac{1}{2} m_{\rho} \omega_{\rho}^{2} \rho^{2} + \frac{1}{2} m_{\lambda} \omega_{\lambda}^{2} \lambda^{2}$$

$$P = M\dot{\mathbf{k}}_{c} = \mathbf{p}_{1} + \mathbf{p}_{2} + \mathbf{p}_{3},$$

$$\rho = \mathbf{r}_{1} - \mathbf{r}_{2},$$

$$\lambda = \frac{m_{1}\mathbf{r}_{1} + m_{2}\mathbf{r}_{2}}{m_{1} + m_{2}} - \mathbf{r}_{3}.$$

$$p = M\dot{\mathbf{k}}_{c} = \mathbf{p}_{1} + \mathbf{p}_{2} + \mathbf{p}_{3},$$

$$p_{\rho} = m_{\rho}\dot{\mathbf{p}} = \frac{m_{2}}{m_{1} + m_{2}}\mathbf{p}_{1} - \frac{m_{1}}{m_{1} + m_{2}}\mathbf{p}_{2},$$

$$p_{\lambda} = m_{\lambda}\dot{\lambda} = \frac{m_{3}(\mathbf{p}_{1} + \mathbf{p}_{2}) - (m_{1} + m_{2})\mathbf{p}_{3}}{(m_{1} + m_{2} + m_{3})}.$$

$$\begin{aligned} |\mathcal{B}(\boldsymbol{P}_{c})_{J,M}\rangle &= \sum_{S_{z},M_{L};c_{i}} \langle L, M_{L}; S, S_{z} | J, M \rangle \int d\boldsymbol{p}_{1} d\boldsymbol{p}_{2} d\boldsymbol{p}_{3} \delta^{3}(\boldsymbol{p}_{1} + \boldsymbol{p}_{2} + \boldsymbol{p}_{3} - \boldsymbol{P}_{c}) \Psi_{N,L,M_{L}}(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}) \\ &\times \chi_{s_{1},s_{2},s_{3}}^{S,S_{z}} \frac{\epsilon_{c_{1}c_{2}c_{3}}}{\sqrt{\epsilon}} \phi_{i_{1},i_{2},i_{3}} b_{c_{1},i_{1},s_{1},\boldsymbol{p}_{1}}^{\dagger} b_{c_{2},i_{2},s_{2},\boldsymbol{p}_{2}}^{\dagger} b_{c_{3},i_{3},s_{3},\boldsymbol{p}_{3}}^{\dagger} | 0 \rangle, \end{aligned}$$

$$\sqrt{6}$$

$$\langle \mathcal{B}(\mathbf{P}'_{c})_{J,M} | \mathcal{B}(\mathbf{P}_{c})_{J,M} \rangle = \delta^{3}(\mathbf{P}'_{c} - \mathbf{P}_{c})$$

$$\Psi_{LM_Ln_\rho l_\rho n_\lambda l_\lambda}(\boldsymbol{P}, \boldsymbol{p}_\rho, \boldsymbol{p}_\lambda) = \delta^3(\boldsymbol{P} - \boldsymbol{P}_c) \sum_m \langle LM_L | l_\rho m, l_\lambda M_L - m \rangle \psi_{n_\rho l_\rho m}(\boldsymbol{p}_\rho) \psi_{n_\lambda l_\lambda (M_L - m)}(\boldsymbol{p}_\lambda) \rangle$$

$$\langle \phi_{i_1,i_2,i_3} b^{\dagger}_{c_1,i_1,s_1,p_1} b^{\dagger}_{c_2,i_2,s_2,p_2} b^{\dagger}_{c_3,i_3,s_3,p_3} | 0 \rangle,$$

$$\psi_{nLm}(\mathbf{p}) = (i)^l (-1)^n \left[\frac{2n!}{(n+L+\frac{1}{2})!} \right]^{\frac{1}{2}} \frac{1}{\alpha^{L+\frac{3}{2}}} e^{-\frac{\mathbf{p}^2}{2\alpha^2}} L_n^{L+\frac{1}{2}} \left(\frac{\mathbf{p}^2}{\alpha^2} \right) \mathcal{Y}_{Lm}(\mathbf{p})$$

MODEL ESTIMATIONS

$$\langle \mathcal{B}_{c}(p_{2})|\bar{c}\gamma_{\mu}(1-\gamma_{5})u|\mathcal{B}_{cc}(p_{1})\rangle = \bar{u}_{2}\left[f_{1}(q^{2})\gamma_{\mu} - f_{2}(q^{2})i\sigma_{\mu\nu}\frac{q^{\nu}}{M} + f_{3}(q^{2})\frac{q_{\mu}}{M} - \left(g_{1}(q^{2})\gamma_{\mu} - g_{2}(q^{2})i\sigma_{\mu\nu}\frac{q^{\nu}}{M} + g_{3}(q^{2})\frac{q_{\mu}}{M}\right)\gamma_{5}\right]u_{1}$$

$$a_{\mathcal{B}'\mathcal{B}} \equiv \langle \mathcal{B}' | \mathcal{H}_{\text{eff}}^{\text{PC}} | \mathcal{B} \rangle = \frac{G_F}{2\sqrt{2}} V_{cs} V_{ud}^* c_- \langle \mathcal{B}' | O_- | \mathcal{B} \rangle$$

$\mathcal{B}_{cc} \to \mathcal{B}_{c}$		f_1	8	1	Ę	S^A	$\langle \mathcal{B}_{f} O_{-} \mathcal{B}_{i} angle$	
	MBM	NRQM	MBM	NRQM	MBM	NRQM	MBM	NRQM
$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{+}$	$\frac{\sqrt{6}}{2}X_1$	$\frac{\sqrt{6}}{2}X_2$	$\frac{\sqrt{6}}{6}X_1'$	$\frac{\sqrt{6}}{6}X_2$	$-\frac{1}{3}Y_{1}$	$-\frac{1}{3}Y_{2}$	$4\sqrt{6}Z_1$	$4\sqrt{6}Z_2$
$\Xi_{cc}^{++}\to \Xi_{c}^{'+}\pi^{+}$	$\frac{\sqrt{2}}{2}X_1$	$\frac{\sqrt{2}}{2}X_2$	$\frac{5\sqrt{2}}{6}X'_{1}$	$\frac{5\sqrt{2}}{6}X_2$	$-\frac{1}{3}Y_1$	$-\frac{1}{3}Y_2$	$-\frac{4\sqrt{2}}{3}Z'_{1}$	0

$$X_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{s}u_{c} + v_{s}v_{c})$$

$$X_{1}' = 4\pi \int_{0}^{R} r^{2} dr(u_{s}u_{c} - \frac{1}{3}v_{s}v_{c})$$

$$Y_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{u}^{2} - \frac{1}{3}v_{u}^{2})$$

$$Z_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{s}u_{u} + v_{s}v_{u})(u_{c}u_{d} + v_{c}v_{d})$$

$$Z_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{s}v_{u} - v_{s}u_{u})(u_{c}v_{d} - v_{c}u_{d})$$

$$Z_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{s}v_{u} - v_{s}u_{u})(u_{c}v_{d} - v_{c}u_{d})$$

$$Z_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{s}v_{u} - v_{s}u_{u})(u_{c}v_{d} - v_{c}u_{d})$$

$$Z_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{s}v_{u} - v_{s}u_{u})(u_{c}v_{d} - v_{c}u_{d})$$

$$Z_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{s}v_{u} - v_{s}u_{u})(u_{c}v_{d} - v_{c}u_{d})$$

$$Z_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{s}v_{u} - v_{s}u_{u})(u_{c}v_{d} - v_{c}u_{d})$$

$$Z_{1} = 4\pi \int_{0}^{R} r^{2} dr(u_{s}v_{u} - v_{s}u_{u})(u_{c}v_{d} - v_{c}u_{d})$$

$$Z_{2} = 128 \sqrt{2}\pi^{3/2} \left(\frac{\alpha_{\lambda 2}\alpha_{\lambda 3}\alpha_{\rho 2}\alpha_{\rho 3}}{4\alpha_{\lambda 2}^{2} + \alpha_{\lambda 3}^{2} + 4\alpha_{\rho 3}^{2}}\right)^{3/2}$$

$$Z_{2} = 0.79$$

Bag model

MODEL INPUTS

$$\langle \mathcal{B}_{c}(p_{2})|\bar{c}\gamma_{\mu}(1-\gamma_{5})u|\mathcal{B}_{cc}(p_{1})\rangle = \bar{u}_{2}\left[f_{1}(q^{2})\gamma_{\mu} - f_{2}(q^{2})i\sigma_{\mu\nu}\frac{q^{\nu}}{M} + f_{3}(q^{2})\frac{q_{\mu}}{M} - \left(g_{1}(q^{2})\gamma_{\mu} - g_{2}(q^{2})i\sigma_{\mu\nu}\frac{q^{\nu}}{M} + g_{3}(q^{2})\frac{q_{\mu}}{M}\right)\gamma_{5}\right]u_{1}$$

$$a_{\mathcal{B}'\mathcal{B}} \equiv \langle \mathcal{B}' | \mathcal{H}_{\text{eff}}^{\text{PC}} | \mathcal{B} \rangle = \frac{G_F}{2\sqrt{2}} V_{cs} V_{ud}^* c_- \langle \mathcal{B}' | O_- | \mathcal{B} \rangle$$

	$(\alpha_{\rho 1}, \alpha_{\rho 2})$	$f_1(m_P^2)$	$g_1(m_P^2)$	$g^{A(\pi)}_{\mathcal{B}'\mathcal{B}}$	$\langle \mathcal{B}_f$
$\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$					
MBM		0.577	0.222	-0.217	0.0
NRQM					
Case 1	(0.50, 0.21)	0.709	0.236	-0.333	0.0
Case 2	(0.51, 0.19)	0.574	0.191	-0.333	0.0
Case 3	(0.53, 0.17)	0.425	0.141	-0.333	0.0
$\Xi_{cc}^{++} \to \Xi_c^{\prime+} \pi^+$					
MBM		0.386	0.703	-0.217	8.4
NRQM					
Case 1	(0.50, 0.21)	0.397	0.662	-0.333	C
Case 2	(0.51, 0.19)	0.323	0.538	-0.333	C
Case 3	(0.53, 0.17)	0.240	0.400	-0.333	C

$$\Xi_{CC}^{++}: \quad \alpha_{\lambda 1} = \left[\frac{16m_u}{3(2m_c + m_u)}\right]^{\frac{1}{4}} \alpha_{\rho 1} \qquad \qquad \Xi_{C}^{+}: \quad \alpha_{\lambda 2} = \left[\frac{4m_c(m_s + m_u)}{3m_sm_u(m_s + m_u)}\right]^{\frac{1}{4}} \alpha_{\rho 1}$$

RESULTS

		A^{fac}	$A^{ m nf}$	A^{tot}	B^{fac}	B^{nf}	$B^{\rm tot}$	$ 10^2 \mathcal{B}$	α	R
$\Xi_{cc}^{++} \rightarrow$	$\Xi_c^+\pi^+$									
MBM		7.40	-10.79	-3.38	-15.06	18.91	3.85	0.69	-0.41	
NRQM	I Case 1	9.1	-15.6	-6.5	-16.0	27.4	11.4	3.01	-0.78	
	Case 2	7.4	-12.4	-5.0	-13.0	21.8	8.8	1.83	-0.78	
	Case 3	7.4	-10.8	-3.4	-15.1	18.9	3.8	0.69	-0.41	
$\Xi_{cc}^{++} \rightarrow$	$\Xi_c^{'+}\pi^+$									$\mathcal{B}(\Xi_{cc}^{++}\to\Xi_{c}^{+}\pi^{+})_{\mathrm{expt}}$
MBM		4.49	-0.04	4.45	-48.50	0.06	-48.44	4.65	-0.84	6.74
NRQM	I Case 1	4.6	0	4.6	-45.6	0	-45.6	4.32	-0.89	1.44
	Case 2	3.7	0	3.7	-37.1	0	-31.0	2.86	-0.89	1.56
	Case 3	2.8	0	2.8	-27.6	0	-27.6	2.16	-0.89	1.32
LHCb										1.41 ± 0.20

- NF amplitudes are suppressed for $\Xi_c^{\prime+}\pi^+$ mode, due to Korner-Pati-Woo theorem. •
- Both S- and P-wave NF amplitudes in $\Xi_c^+\pi^+$ dominate and have destructive interference with factorizale ones •
- MIT bag model estimation gives small $\Xi_c^+\pi^+$ and large ratio R.
- NR quark model estimation can reach experimental requirement, taking Case 2 as an example. •
- The sizes of non-factorizable amplitudes: bag model < NRQM.

[15] J.G. Körner, Octet behaviour of single-particle matrix elements $\langle B' | Hw | B \rangle$ using a weak current-current quark Hamiltonian, Nucl. Phys. B 25 (1971) 282 [INSPIRE].

[16] J.C. Pati and C.H. Woo, $\Delta I = \frac{1}{2}$ rule with fermion quarks, Phys. Rev. D 3 (1971) 2920 [INSPIRE]

COMPARISON

	A ^{fac}	A ^{nf}	A ^{tot}	B ^{fac}	B ^{nf}	B ^{tot}	\mathscr{B}	α	R
$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{+}$									
MBM [11]	7.4	-10.8	-3.4	-15.1	18.9	3.8	0.69	-0.41	
NRQM									
Case 1	9.1	-15.6	-6.5	-16.0	27.4	11.4	3.01	-0.78	
Case 2	7.4	-12.4	-5.0	-13.0	21.8	8.8	1.83	-0.78	
Case 3	5.5	-9.6	-4.1	-9.6	16.8	7.2	1.20	-0.78	
Gutsche et al. [5]	-8.1	11.5	3.4	13.0	-18.5	-5.6	0.71	-0.57	
Sharma & Dhir [8]									
NRQM	7.38	0	7.38	-16.77	-24.95	-41.72	6.64	-0.99	
HQET	9.52	0	9.52	-19.45	-24.95	-44.40	9.19	-0.99	
Shi <i>et al</i> . [6]									
LCSR+HQET	9.52	-16.67	-7.18	-19.45	-20.47	-39.92	6.22	+0.99	
Ke & Li [9]									
$\theta = 16.27^{\circ}$							2.14	-0.09	
$\theta = 85.54^{\circ}$							2.14	-0.95	
Liu & Geng [31] ⁴									
SB ($\theta = -24.7^{\circ}$)	4.83	-9.99	-5.16	5.16	13.6	18.8	2.24	-0.93	Ξ_c mixing
HB ($\theta = 24.7^{\circ}$)	7.08	-20.3	-13.2	-22.1	33.0	10.9	10.3	-0.30	

destructive constructive

- current data on Br and R
- future measurement of α

help to discriminate theoretical studies

SUMMARY

- It is the time to study charmed baryon decays.
- the assistance of topological diagrams.
- parameters contributing to non-factorizable amplitudes.
- space of NR quark model or bag model with sizable Ξ_c mixing.
- More experimental and theoretical progresses are anticipated.

• The decays $\Xi_{cc}^{++} \to \Xi_{c}^{(\prime)+} \pi^+$ have been studied theoretically in the pole model with

Non-factorizable contributions play an essential role in charmed baryon decays.

Two quark model have been investigated in the calculation of non-perturbative

• Current data (R and one branching fraction) can be explained in proper parameter Thank you for your attention!

$E_c - E_c'$ mixing

$$R = 2\Gamma(\Xi_c^0 \to \Xi^- e^+ \nu_e) / 3\Gamma(\Lambda_c^+ \to \Lambda e^+ \nu_e)$$

$$\mathcal{B}_{\text{Belle}}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (1.31 \pm 0.04 \pm 0.07 \pm 0.38)\%,$$

$$\mathcal{B}_{\text{ALICE}}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.43 \pm 0.25 \pm 0.35 \pm 0.72)\%,$$

$$\mathcal{B}_{\text{LQCD}}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.38 \pm 0.44)\%$$

$$BESIII$$

 $R(Belle) = 0.33 \pm 0.10$, $R(ALICE) = 0.60 \pm 0.21$, $R(LQCD) = 0.59 \pm 0.11$

$$R'_{av} = 0.46 \pm 0.07$$
, $R_{av} = 0$.

$$R(SU(3)_F) = 1$$

$$|\theta_c| = 0.137(5)\pi$$
 0.430398

C.Q. Geng, X.-N. Jin, C.-W. Liu, PLB 833 (2023) 137736

 $.59 \pm 0.10$

$$\begin{aligned} |\Xi_c\rangle &= \cos\theta_c |\Xi_c^{\overline{\mathbf{3}}}\rangle + \sin\theta_c |\Xi_c^{\mathbf{6}}\rangle \\ |\Xi_c'\rangle &= \cos\theta_c |\Xi_c^{\mathbf{6}}\rangle - \sin\theta_c |\Xi_c^{\overline{\mathbf{3}}}\rangle \\ \theta &= (1.200 \pm 0.090 \pm 0.020)^\circ \end{aligned}$$

$$\theta = (1.220 \pm 0.130 \pm 0.010)^{\circ}$$

H. Liu, L. Liu, P. Sun, J. Tan, W. Wang, Y. Yang, Q. Zhang, 2303.17863[hep-lat]

