

Definition of the R-Value

• Ratio of leading-order production cross section of hadrons and muon pairs in e⁺e⁻ annihilation:

→ Important quantity in particle physics to test the Standard Model (SM)!

07 72

G

Running of the Fine Structure Constant: $\Delta lpha_{ m em}$

• R-value contributes in determination of running QED coupling constant at Z pole $\rightarrow \alpha(M_Z^2)$

 \rightarrow Precision test for the SM & essential for electroweak precision physics!

Running of the Fine Structure Constant: $\Delta lpha_{ m em}$

$$\Delta \alpha_{\rm em}(s) = 1 - \frac{\alpha(0)}{\alpha(s)} = \Delta \alpha_{\rm lepton}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

→ Over a wide energy range the **R-value is an important input!**

R-Value Measurements at BESIII - Yasemin Schelhaas

GU

Anomalous Magnetic Moment of the Muon a_{μ}

- **Discrepancy of 4.2** σ between SM prediction & direct measurements
- Hadronic contributions dominate by far the uncertainty of $a_{\mu}^{\rm SM}$
- Hadronic Vacuum Polarisation (HVP):
 - Dispersive approach: $a_{\mu}^{\text{HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{2m_{\pi}}^{\infty} \mathrm{d}s \, \frac{\mathbf{R}(\mathbf{s}) \, K(s)}{s^2}$

• R-value needed as experimental input

IG

Beijing Electron-Positron Collider II (BEPCII)

- Energy range: **2.0 GeV** $\leq \sqrt{s} < 5.0$ GeV
- Peak luminosity reached: $\mathcal{L} = 1.1 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ at $\psi(3770)$
- World's largest τ -charm data set in e^+e^- annihilation!

IG

Beijing Spectrometer III (BESIII)

M. Ablikim et al., Nucl. Instrum. Meth. A 614, 345 (2010)

- Cylindrically shaped general purpose detector with four main layers
- Superconducting solenoid magnet providing a 1 Tesla magnetic field
- Can cover 93% of the full solid angle \rightarrow photons at polar angles above 21°

Determination of the R-Value

G

Analysis Workflow

JG U

16.07.23

Bee.

LUARLW: Nominal Model for Signal Simulation

- Self consistent inclusive generator
- Based on **JETSET** for low energies
- Kinematics of initial hadrons determined from Lund area law [arXiv:hep-ph/9910285]
- Generation of resonant and continuum states
- **ISR** implemented from $m_{\pi\pi}$ to \sqrt{s}
- Phenomenological parameters tuned to data
- Used in most previous R-value measurements

Hadronisation procedure in e⁺e⁻ annihilation

R-Value Measurements at BESIII - Yasemin Schelhaas

Alternative Model: HYBRID Generator

- New event generator with as much experimental input as possible
- Combination of three established event generators:
 - Phokhara: 10 exclusive channels, hadronic models tuned to experiment
 - **ConExc:** 47 channels with cross sections from experiment
 - LUARLW: remaining unknown processes

Т

Comparison of LUARLW and HYBRID Generator

- Effective energy spectrum of simulated ISR processes at $\sqrt{s} = 3.4 \text{ GeV}$
- LUARLW and HYBRID generators
- $\sqrt{s'}$ spectrum directly reflects the fraction of ISR-returned processes

 \rightarrow Consistent $\sqrt{s'}$ spectra!

Comparison of LUARLW and HYBRID Generator with Data

- N_{prg}: Number of good charged tracks (prong)
- N_{iso}^{2prg} : Number of isolated clusters in 2-prong events

• $\cos(\theta)$, *E*, and *p*: polar angle, EMC deposited energy, and measured momentum in MDC

Good agreement of both

generator models & data!

Results of R-Value Measurements between 2.2 and 3.7 GeV

- Accuracy better than **2.6%** below 3.1 GeV & better than **3%** above
- In the energy region from 3.4 to 3.6 GeV:
 - Larger than KEDR result by 1.9σ & larger than pQCD prediction by 2.7σ

Further R-Value Measurements at BESIII

This work:

- 14 R scan data points
- 2.23 to 3.67 GeV
- ~110 pb⁻¹

For future analyses:

- 21 R scan data points 104
- 2.00 to 3.08 GeV
- ~550 pb⁻¹

• 104 R scan data points

G

- 3.85 to 4.59 GeV
- ~800 pb⁻¹

- Large amounts of additional data available (139 scan data points with $> 10^5$ hadrons each)
- High accuracy R-value measurements in continuum and open-charm region

Alternative Approaches for further R-Value Measurements

- Exclusive measurement below 2 GeV
- Inclusive measurement above 2 GeV
- Tensions in transition region

- Use of ISR technique
- Exploit large charmonium data sets at BESIII
- Better detection efficiency due to ISR kinematics
- Comparison of inclusive & exclusive measurements

Summary & Outlook

- High accuracy R-value measurements important to test the SM
 - Running of $\alpha_{\rm em}(M_Z^2)$
 - Muon anomaly a_{μ}
- Pilot R-value measurement at BESIII published in 2022 (Phys. Rev. Lett. 128 (2022) 062004)
 - 2.2324 GeV $\leq \sqrt{s} \leq 3.6710$ GeV
 - Accuracy better than
 - 2.6% below 3.1 GeV
 - 3% in the region above

Thank you for your attention!

- Additional high statistics data samples available
- Alternative approach exploiting ISR being developed at BESIII

R-Value Measurements at BESIII - Yasemin Schelhaas

Backup

R-Value Measurements at BESIII - Yasemin Schelhaas

16.07.23

R-Value Measurements at BESII

• BESII improved the precision of R from 15-20% to 6%!

16 07 23

|G|U

Lattice QCD Result for $a_{\mu}^{\rm SM}$

- Discrepancy between $a_{\mu}^{\rm SM}$ and $a_{\mu}^{\rm exp}$: 4.2 σ
- In tension with latest lattice QCD result from BMW collaboration: 1.5 σ

JGU

Analysis Workflow

Analysis Workflow

R-Value Measurements at BESIII - Yasemin Schelhaas

2-prong events:

16 07 23

JGU

CC Cross Sections

Individual channels:

- Red: BESIII
- Blue: Belle
- Green: BaBar
- Yellow: CLEO
- Black: PDG

Total hadronic:

• Green: Sum of exclusive channels

JGU

- Blue: pQCD for $R_{uds} \cdot \sigma_{\mu\mu}$
- Red: Sum