Understanding Charm with LCSR using $D^* \to D\gamma$ Decays

(Based on ongoing work)

In collaboration with Prof. Namit Mahajan

Anshika Bansal (Email: <u>anshika@prl.res.in</u>)

11th International Workshop on Charm Physics (CHARM 2023), (17th – 21st July, 2023, Universität Siegen, Germany)

20/07/2023

- Distribution amplitudes (DAs) are very crucial universal non-perturbative input for theoretical computations.
- DAs for heavy meson case are modelled using the heavy quark expansion. No precise form is known so far. [Grozin and Neubert, PRD 55 (1997) 272-290]
- Exclusive decays indicate that the first inverse moment of these DAs is the most important parameter.

$$\lambda_M^{-1}(\mu) = \int_0^\infty \frac{d\omega}{\omega} \phi_+^M(\omega,\mu)$$

- Distribution amplitudes (DAs) are very crucial universal non-perturbative input for theoretical computations.
- DAs for heavy meson case are modelled using the heavy quark expansion. No precise form is known so far. [Grozin and Neubert, PRD 55 (1997) 272-290]
- Exclusive decays indicate that the first inverse moment of these DAs is the most important parameter.

$$\lambda_M^{-1}(\mu) = \int_0^\infty \frac{d\omega}{\omega} \phi_+^M(\omega,\mu)$$

• For B-meson case, λ_B has large uncertainty: Ranges from $\lambda_B \approx 0.2$ GeV (favoured by Non-leptonic decays) to (0.45 ± 0.15) GeV (obtained using QCD sum rule calculations). [Beneke et. Al, Nucl. Phys. B 675 (2003) 333, Beneke et. Al, Nucl. Phys. B 832 (2010) 109, Braun et. Al, Phys. Rev. D 69 (2004) 0340114]

- Study of radiative mode $(B^- \rightarrow \ell^- \nu_\ell \gamma)$ is the simplest process suggested for the study of λ_B : provides only the constraints ($\lambda_B > 0.3$ MeV). [Beneke and Rohrwild, Eur. Phys. J. C 71 (2011) 1818, Beneke et. Al, JHEP o7 (2018) 154]
- For D-meson case, there is no systematic computation : Only ad-hoc values analogous to the B-meson case.

- Distribution amplitudes (DAs) are very crucial universal non-perturbative input for theoretical computations.
- DAs for heavy meson case are modelled using the heavy quark expansion. No precise form is known so far. [Grozin and Neubert, PRD 55 (1997) 272-290]
- Exclusive decays indicate that the first inverse moment of these DAs is the most important parameter.

$$\lambda_M^{-1}(\mu) = \int_0^\infty \frac{d\omega}{\omega} \phi_+^M(\omega,\mu)$$

• For B-meson case, λ_B has large uncertainty: Ranges from $\lambda_B \approx 0.2$ GeV (favoured by Non-leptonic decays) to (0.45 ± 0.15) GeV (obtained using QCD sum rule calculations). [Beneke et. Al, Nucl. Phys. B 675 (2003) 333, Beneke et. Al, Nucl. Phys. B 832 (2010) 109, Braun et. Al, Phys. Rev. D 69 (2004) 0340114]

- Study of radiative mode $(B^- \rightarrow \ell^- \nu_\ell \gamma)$ is the simplest process suggested for the study of λ_B : provides only the constraints ($\lambda_B > 0.3$ MeV). [Beneke and Rohrwild, Eur. Phys. J. C 71 (2011) 1818, Beneke et. Al, JHEP 07 (2018) 154]
- For D-meson case, there is no systematic computation : Only ad-hoc values analogous to the B-meson case.

Our Objective

To look for some other mode which can help us get the estimates for the inverse moment: $D_q^* \rightarrow D_q \gamma$

$D_q^* \to D_q \gamma$ Decays: An Introduction

• The amplitude for
$$D_q^* \to D_q \gamma$$
 $(q = u, d, s)$ is:
 $\mathcal{M}(D_q^* \to D_q(p)\gamma(k)) = eg_{D_q} \varepsilon_{\mu\nu\rho\sigma} k^{\rho} \epsilon_{\gamma}^{\sigma} v^{\nu} \epsilon_{D_q^*}^{\mu}$

 $\frac{e_{g_{D_q}}}{2}$ is the transition magnetic moment.

• The decay width:

$$\Gamma(D_q^*(p') \to D_q(p)\gamma(k)) = \frac{\alpha_{em}}{3} |g_{D_q}|^2 |\vec{k}|^3$$

$D_q^* \to D_q \gamma$ Decays: An Introduction

• The amplitude for
$$D_q^* \to D_q \gamma$$
 $(q = u, d, s)$ is:
 $\mathcal{M}(D_q^* \to D_q(p)\gamma(k)) = e g_{D_q} \epsilon_{\mu\nu\rho\sigma} k^{\rho} \epsilon_{\gamma}^{\sigma} v^{\nu} \epsilon_{D_q^*}^{\mu}$

 $\frac{eg_{D_q}}{2}$ is the transition magnetic moment.

• The decay width:

$$\Gamma(D_q^*(p') \to D_q(p)\gamma(k)) = \frac{\alpha_{em}}{3} |g_{D_q}|^2 |\vec{k}|^3$$

Experimental Data

Channel	Branching Ratio	Decay widths	g_{D_q} (Calculated)
$D^{*+} \rightarrow D^+ \gamma (q = d)$	$(1.6 \pm 0.4)\%$	(83.4 ± 1.8) KeV	0.47 ± 0.06
$D^{*0} \rightarrow D^0 \gamma (q = u)$	$(35.3 \pm 0.9)\%$	< 2.1 MeV	< 10.98
$D_s^{*+} \rightarrow D_s^+ \gamma (q=s)$	$(93.5 \pm 0.7)\%$	< 1.9 MeV	< 16.27
			[PDG]

$D_q^* \to D_q \gamma$ Decays: An Introduction

• The amplitude for
$$D_q^* \to D_q \gamma$$
 $(q = u, d, s)$ is:
 $\mathcal{M}(D_q^* \to D_q(p)\gamma(k)) = e g_{D_q} \varepsilon_{\mu\nu\rho\sigma} k^{\rho} \epsilon_{\gamma}^{\sigma} v^{\nu} \epsilon_{D_q^*}^{\mu}$

 $\frac{eg_{D_q}}{2}$ is the transition magnetic moment.

• The decay width:

$$\Gamma(D_q^*(p') \to D_q(p)\gamma(k)) = \frac{\alpha_{em}}{3} |g_{D_q}|^2 |\vec{k}|^3$$

Experimental Data

Channel	Branching Ratio	Decay widths	g_{D_q} (Calculated)
$D^{*+} \rightarrow D^+ \gamma (q = d)$	$(1.6 \pm 0.4)\%$	(83.4 ± 1.8) KeV	0.47 ± 0.06
$D^{*0} \rightarrow D^0 \gamma (q = u)$	$(35.3 \pm 0.9)\%$	< 2.1 MeV	< 10.98
$D_s^{*+} \rightarrow D_s^+ \gamma (q=s)$	$(93.5 \pm 0.7)\%$	< 1.9 MeV	< 16.27
			[PDG]

$D_q^* \rightarrow D_q \gamma$ Decays: An Introduction

• The amplitude for
$$D_q^* \to D_q \gamma$$
 $(q = u, d, s)$ is:
 $\mathcal{M}(D_q^* \to D_q(p)\gamma(k)) = eg_{D_q} \varepsilon_{\mu\nu\rho\sigma} k^{\rho} \epsilon_{\gamma}^{\sigma} v^{\nu} \epsilon_{D_q^*}^{\mu}$

 $\frac{eg_{D_q}}{2}$ is the transition magnetic moment.

• The decay width:

$$\Gamma(D_q^*(p') \to D_q(p)\gamma(k)) = \frac{\alpha_{em}}{3} |g_{D_q}|^2 |\vec{k}|^3$$

Experimental Data

Channel	Branching Ratio	Decay widths	g_{D_q} (Calculated)
$D^{*+} \rightarrow D^+ \gamma (q = d)$	$(1.6 \pm 0.4)\%$	(83.4 ± 1.8) KeV	0.47 ± 0.06
$D^{*0} \rightarrow D^0 \gamma (q = u)$	$(35.3 \pm 0.9)\%$	< 2.1 MeV	< 10.98
$D_s^{*+} \rightarrow D_s^+ \gamma (q=s)$	$(93.5 \pm 0.7)\%$	< 1.9 MeV	< 16.27
			[PDG]

Can we use this data to get estimates on λ_D^{-1} ??

[PDG]

Let us try to do it using Light Cone Sum Rules

Light Cone Sum Rules in a Nutshell

Basic Idea

To calculate the hadronic objects of interest using the analytic properties of the correlation function involved.

Light Cone Sum Rules in a Nutshell

Basic Idea

To calculate the hadronic objects of interest using the analytic properties of the correlation function involved.

- Uses the unitarity and analyticity of the correlation function.
- Can be written directly in terms of hadronic states.

Ways to calculate a correlation function

Perturbative QCD

- Uses the theory of quarks and gluons.
- Treated in the framework of Light Cone Operator Product Expansion (OPE).

Light Cone Sum Rules in a Nutshell

Basic Idea

To calculate the hadronic objects of interest using the analytic properties of the correlation function involved.

TOOLS TO DERIVE LCSR

Light cone OPE (Enables one to write correlation function as a product of Hard scattering kernel and DAs)

Borel Transformation

(To suppress the effect of continuum and higher resonances to reduce the uncertainty due to duality approximation)

• The correlation function involved:

 D_q

 j^{em}_{μ}

• The correlation function involved:

$$\langle D(p) \, | \, \bar{c}_{\alpha}(0)[0,x] q_{\beta}(x) \, | \, 0 \rangle = \frac{i f_D m_D}{4} \int_0^{\infty} d\omega \, e^{i \omega v.x} \left[(1 + v^{\mu} \gamma_{\mu}) \left\{ \underbrace{\phi_{+}^D(\omega) - \underbrace{\phi_{-}^D(\omega)}_{2v.x} x_{\mu} \gamma^{\mu}}_{2v.x} \right\} \gamma_5 \right]_{\beta \alpha}$$

$$Momentum of the light quark inside the D-meson$$

 D_q

• The correlation function involved:

• Bi-quark operator between vacuum & D-state written in terms of D-meson DAs as:

 D_q

• The correlation function involved:

• Bi-quark operator between vacuum & D-state written in terms of D-meson DAs as:

 $\lambda_D = \omega_0$ in the exponential model (leading order) \Longrightarrow our objective is to find out ω_0

• The dispersion relation for $G_{D_q^*D_q}$:

$$T^{had}(p,k) = 2e \frac{f_{D_q^*} m_{D_q^*}}{m_{D_q} + m_{D_q^*}} \frac{G_{D_q D_q^*}(Q^2)}{(p+k)^2 - m_{D_q^*}^2} + \underbrace{\int_{m_{D_q^*}^2}^{\infty} ds \frac{1}{\pi} \frac{\operatorname{Im} \left(T^{had}(s,Q^2)\right)}{s - (p+k)^2}}_{Quark-Hadron duality} = \int_{s_0}^{\infty} ds \frac{1}{\pi} \frac{\operatorname{Im} \left(T^{QCD}(s,Q^2)\right)}{s - (p+k)^2}$$

• The dispersion relation for $G_{D_q^*D_q}$:

$$T^{had}(p,k) = 2e \frac{f_{D_q^*} m_{D_q^*}}{m_{D_q} + m_{D_q^*}} \frac{G_{D_q D_q^*}(Q^2)}{(p+k)^2 - m_{D_q^*}^2} + \left(\int_{m_{D_q^*}^2}^{\infty} ds \frac{1}{\pi} \frac{\operatorname{Im} \left(T^{had}(s,Q^2)\right)}{s - (p+k)^2}\right)$$

$$can be approximated using Quark-Hadron duality = \int_{s_0}^{\infty} ds \frac{1}{\pi} \frac{\operatorname{Im} \left(T^{QCD}(s,Q^2)\right)}{s - (p+k)^2}$$

• Finally performing the Borel Transformation:

$$\mathscr{B}_{M^2}\left(\frac{1}{(m^2 - q^2)^k}\right) = \frac{1}{(k-1)!} \frac{\exp(-m^2/M^2)}{M^{2(k-1)}}$$

The final SUM RULE

$$G_{D_q^*D_q}(-k^2) = \frac{1}{f_{D_q^*}m_{D_q^*}} \int_0^{s_0} ds \ e^{\frac{\left(m_{D_q^*}^2 - s\right)}{M^2}} \frac{1}{\pi} \operatorname{Im}\left(T^{QCD}(s,Q^2)\right)$$

$$T^{QCD}(s,Q^{2}) = ef_{D_{q}}m_{D_{q}}\int_{0}^{\infty}dw \left\{ \phi^{D}_{+}(w) \left[\frac{Q_{C}}{(k-wv)^{2} - m_{c}^{2}} + \frac{Q_{q}}{(k+wv)^{2} - m_{q}^{2}} \right] + \psi^{D}_{\pm}(w) \left[\frac{Q_{C}m_{c}}{((k-wv)^{2} - m_{c}^{2})^{2}} + \frac{Q_{q}m_{q}}{((k+wv)^{2} - m_{q}^{2})^{2}} \right] \right\}$$

$$\Psi^{D}_{\pm}(\omega) = \int_{0}^{\omega}d\tau \left(\phi^{D}_{+}(\omega) - \phi^{D}_{-}(\omega)\right)$$

• The analytic results for g_{D_q} is consistent with the heavy quark and chiral symmetry prediction, according to which $g_{D_q} \sim \frac{Q_c}{m_c}$.

[Amundson et. Al, PLB 296 (1992) 415-419]

• Matching the LCSR result with experimental data for $g_{D^+} \Longrightarrow \omega_0 \sim 0.35 \pm 0.02$ GeV.

- The analytic results for g_{D_q} is consistent with the heavy quark and chiral symmetry prediction, according to which $g_{D_q} \sim \frac{Q_c}{m_c}$. [Amundson et. Al, PLB 296 (1992) 415-419]
- Matching the LCSR result with experimental data for $g_{D^+} \Longrightarrow \omega_0 \sim 0.35 \pm 0.02$ GeV.
- Corrections coming from higher order effects and the RG evolution of DAs may play very crucial role (underway.)

- The analytic results for g_{D_q} is consistent with the heavy quark and chiral symmetry prediction, according to which $g_{D_q} \sim \frac{Q_c}{m_c}$. [Amundson et. Al, PLB 296 (1992) 415-419]
- Matching the LCSR result with experimental data for $g_{D^+} \Longrightarrow \omega_0 \sim 0.35 \pm 0.02$ GeV.
- Corrections coming from higher order effects and the RG evolution of DAs may play very crucial role (underway.)
- To obtain the corresponding value of ω_0 for D^0 and D_s^+ , the experimental data on the total decay widths is required.

- The analytic results for g_{D_q} is consistent with the heavy quark and chiral symmetry prediction, according to which $g_{D_q} \sim \frac{Q_c}{m_c}$. [Amundson et. Al, PLB 296 (1992) 415-419]
- Matching the LCSR result with experimental data for $g_{D^+} \Longrightarrow \omega_0 \sim 0.35 \pm 0.02$ GeV.
- Corrections coming from higher order effects and the RG evolution of DAs may play very crucial role (underway.)
- To obtain the corresponding value of ω_0 for D^0 and D_s^+ , the experimental data on the total decay widths is required.
- The difference or similarity between the ω_0 values for different mesons is expected to shed some light on the SU(3) violation effects in the charm system.

- * Heavy meson distribution amplitudes are very crucial theoretical objects.
- * For B-meson case, there are large uncertainties on the value of λ_B .
- $B^- → ℓ^- ν_ℓ γ$: Simplest mode − Provides only constraints (lower bound)
- * For D-meson, no proper estimates are present.
- * Looking for some other mode will be helpful.

- * Heavy meson distribution amplitudes are very crucial theoretical objects.
- * For B-meson case, there are large uncertainties on the value of λ_B .
- * $B^- \rightarrow \ell^- \nu_\ell \gamma$: Simplest mode Provides only constraints (lower bound)
- * For D-meson, no proper estimates are present.
- * Looking for some other mode will be helpful.
- * We attempt to use experimental data of $D^{*+} \rightarrow D^+ \gamma$ to get the estimate of the inverse moment of D^+ DA in LCSR framework using the exponential model.
- * The estimated value for the inverse moment turns out to be ~ 0.35 ± 0.02 GeV (preliminary).

- * Heavy meson distribution amplitudes are very crucial theoretical objects.
- * For B-meson case, there are large uncertainties on the value of λ_B .
- * $B^- \rightarrow \ell^- \nu_\ell \gamma$: Simplest mode Provides only constraints (lower bound)
- * For D-meson, no proper estimates are present.
- * Looking for some other mode will be helpful.
- * We attempt to use experimental data of $D^{*+} \rightarrow D^+ \gamma$ to get the estimate of the inverse moment of D^+ DA in LCSR framework using the exponential model.
- * The estimated value for the inverse moment turns out to be ~ 0.35 ± 0.02 GeV (preliminary).
- * The corrections from higher order effects and the effects of RG evolution of DAs may play a very crucial role (underway).
- * Solid conclusions can be made once these corrections are included.

- * Heavy meson distribution amplitudes are very crucial theoretical objects.
- * For B-meson case, there are large uncertainties on the value of λ_B .
- * $B^- \rightarrow \ell^- \nu_\ell \gamma$: Simplest mode Provides only constraints (lower bound)
- * For D-meson, no proper estimates are present.
- * Looking for some other mode will be helpful.
- * We attempt to use experimental data of $D^{*+} \rightarrow D^+ \gamma$ to get the estimate of the inverse moment of D^+ DA in LCSR framework using the exponential model.
- * The estimated value for the inverse moment turns out to be ~ 0.35 ± 0.02 GeV (preliminary).
- * The corrections from higher order effects and the effects of RG evolution of DAs may play a very crucial role (underway).
- * Solid conclusions can be made once these corrections are included.
- * A similar analysis will be helpful in getting estimates for B-meson DAs (less corrections expected due to higher order effects) : Experimental data is missing.
- * Proper estimates of the total decay width of the vector heavy mesons and their radiative decay channels are required at the experiments.

Vielen Dank.

Questions/ Comments?