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* Distribution amplitudes (DAs) are very crucial universal non-perturbative input for theoretical computations.

DAs for heavy meson case are modelled using the heavy quark expansion. No precise form is known so far.
[Grozin and Neubert, PRD 55 (1997) 272-290]

Exclusive decays indicate that the first inverse moment of these DAs is the most important parameter.
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- For B-meson case, Az has large uncertainty: Ranges from Az =~ 0.2 GeV (favoured by Non-leptonic decays)

[Beneke et. Al, Nucl. Phys. B 675 (2003) 333,
Beneke et. Al, Nucl. Phys. B 832 (2010) 109,
Braun et. Al, Phys. Rev. D 69 (2004) 0340114]

to (0.45 £ 0.15) GeV (obtained using QCD sum rule calculations).

- Study of radiative mode (B~ — £ v,y) is the simplest process suggested for the study of A5 : provides only

. [Beneke and Rohrwild, Eur. Phys. J. C 71 (2011) 1818,
the constraints (15 > 0.3 MeV). Beneke et. Al, JHEP 07 (2018) 154]

« For D-meson case, there is no systematic computation : Only ad-hoc values analogous to the B-meson case.
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To look for some other mode which can help us get the estimates for the inverse moment: D — Dy
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o The amplitude for D} — Dy (g = u,d, s) is: Coupling

M (D — D (p)y(k)) = e upok €V el

*
q

equ

is the transition magnetic moment.

o The decay width: (D7 (p") = D, (p)y(k)) = agm |&p, | kl?
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is the transition magnetic moment.
Xem 7
« The decay width: L(D§(p) = Dy(p)r(0) = —* | gp, I° 1k 17
Experimental Data
Channel Branching Ratio | Decay widths 5D,

(Calculated)

D* D% oo | 1.6204H% | (83.4+1.8)KeV |047%0.06

D= D% -, | B53£09% < 2.1 MeV < 10.98

D;* > D}y _, | 935£0N% < 1.9 MeV < 16.27
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Let us fry tfo do it using Light Cone Sum Rules
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' To calculate the hadronic objects of interest using the analytic properties of the correlation function involved. |
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' Light Cone Sum Rules in a Nutshell ’
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' To calculate the hadronic objects of interest using the analytic properties of the correlation function involved.
Dispersion relation e P Perturbative QCD
ays to calculate a
e Uses the unitarity and Y3 RO . o Uses the theory of quarks
correlation function

analyticity of the ‘ . and gluons.

correlation function. Treated in the framework
e Can be written directly in of Light Cone Operator
terms of hadronic states. Product Expansion (OPE).




Light Cone Sum Rules in a Nutshell '

Basic Idea

—

L

— — —_—

' To calculate the hadronic objects of interest using the analytic properties of the correlation function involved

= —_ — — —

Dispersion relation S Perturbative QCD
e Uses the unitarity and cor?gafi(fz ;’:lllln?:t?oa;l e Uses the theory of quarks
analyticity of the and gluons.
correlation function. e Treated in the framework
e Can be written directly in of Light Cone Operator
terms of hadronic states. Product Expansion (OPE).

N\ /

Matching the two gives estimates for
the hadronic objects









rlard scattermg Kkernel and DAS




Hard scattering kernel and DAs)

function to its imaginary part )



e The correlation function involved:
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=

Ji = 0.Ly,.c+0,q1,4

L =crg




e The correlation function involved:
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[Grozin and Neubert, PRD 55 (1997) 272-290]

Ap = @y in the exponential model (leading order) — our objective is to find out ®,
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. The analytic results for 8p, is consistent with the

heavy quark and chiral symmetry prediction,
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. To obtain the corresponding value of @, for D’
and D], the experimental data on the total decay
widths is required.
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for g = wy ~ 0.35 £ 0.02 GeV.

« Corrections coming from higher order effects and
the RG evolution of DAs may play very crucial role
(underway.)

. To obtain the corresponding value of @, for D’
and D], the experimental data on the total decay
widths is required.

« The difference or similarity between the w, values
for different mesons is expected to shed some
light on the SU(3) violation effects in the charm
system.
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+ Heavy meson distribution amplitudes are very crucial theoretical objects.

+ For B-meson case, there are large uncertainties on the value of 4.
+ B~ — ¢ v,y : Simplest mode — Provides only constraints (lower bound)
< For D-meson, no proper estimates are present.

+ Looking for some other mode will be helpful.
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+ For B-meson case, there are large uncertainties on the value of 4.

+ B~ — ¢ v,y : Simplest mode — Provides only constraints (lower bound)

< For D-meson, no proper estimates are present.

+ Looking for some other mode will be helpful.

+ We attempt to use experimental data of D" — Dy to get the estimate of the inverse moment
of D' DA in LCSR framework using the exponential model.

% The estimated value for the inverse moment turns out to be ~ 0.35 = 0.02 GeV (preliminary).

< The corrections from higher order effects and the effects of RG evolution of DAs may play a
very crucial role (underway).

< Solid conclusions can be made once these corrections are included.

< A similar analysis will be helpful in getting estimates for B-meson DAs (less corrections
expected due to higher order effects) : Experimental data is missing.

< Proper estimates of the total decay width of the vector heavy mesons and their radiative decay
channels are required at the experiments.
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